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The present Ph.D. Thesis is concerned with first order PDE’s and to the
structural conditions allowing for their transformation into an equivalent,
and somehow simpler, form. Most of the results are framed in the context of
the classical theory of the Lie symmetries of differential equations, and on
the analysis of some invariant quantities. The thesis is organized in 5 main
sections. The first two Chapters present the basic elements of the Lie theory
and some introductory facts about first order PDE’s, with special emphasis
on quasilinear ones. Chapter 3 is devoted to investigate equivalence trans-
formations, i.e., point transformations suitable to deal with classes of dif-
ferential equations involving arbitrary elements. The general framework of
equivalence transformations is then applied to a class of systems of first or-
der PDE’s, consisting of a linear conservation law and four general balance
laws involving some arbitrary continuously differentiable functions, in or-
der to identify the elements of the class that can be mapped to a system of
autonomous conservation laws. Chapter 4 is concerned with the transfor-
mation of nonlinear first order systems of differential equations to a simpler
form. At first, the reduction to an equivalent first order autonomous and
homogeneous quasilinear form is considered. A theorem providing neces-
sary conditions is given, and the reduction to quasilinear form is performed
by constructing the canonical variables associated to the Lie point symme-
tries admitted by the nonlinear system. Then, a general nonlinear system
of first order PDE’s involving the derivatives of the unknown variables in
polynomial form is considered, and a theorem giving necessary and suffi-
cient conditions in order to map it to an autonomous system polynomially
homogeneous in the derivatives is established. Several classes of first or-
der Monge–Ampère systems, either with constant coefficients or with co-
efficients depending on the field variables, provided that the coefficients
entering their equations satisfy some constraints, are reduced to quasilin-
ear (or linear) form. Chapter 5 faces the decoupling problem of general
quasilinear first order systems. Starting from the direct decoupling prob-
lem of hyperbolic quasilinear first order systems in two independent vari-
ables and two or three dependent variables, we observe that the decoupling
conditions can be written in terms of the eigenvalues and eigenvectors of
the coefficient matrix. This allows to obtain a completely general result. At
first, general autonomous and homogeneous quasilinear first order systems
(either hyperbolic or not) are discussed, and the necessary and sufficient
conditions for the decoupling in two or more subsystems proved. Then,
the analysis is extended to the case of nonhomogeneous and/or nonau-
tonomous systems. The conditions, as one expects, involve just the proper-
ties of the eigenvalues and the eigenvectors (together with the generalized
eigenvectors, if needed) of the coefficient matrix; in particular, the condi-
tions for the full decoupling of a hyperbolic system in non–interacting sub-
systems have a physical interpretation since require the vanishing both of
the change of characteristic speeds of a subsystem across a wave of the other
subsystems, and of the interaction coefficients between waves of different
subsystems. Moreover, when the required decoupling conditions are sat-
isfied, we have also the differential constraints whose integration provides
the variable transformation leading to the (partially or fully) decoupled sys-
tem. All the results are extended to the decoupling of nonhomogeneous
and/or nonautonomous quasilinear first order systems.
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1 Introduction

THE results presented in this Ph.D. Thesis are concerned with first order
systems of partial differential equations and to the structural conditions

allowing for their transformation into an equivalent, and somehow sim-
pler, form. Most of the results are framed in the context of the classical
theory (and of some of its recent generalizations and extensions) of the Lie
symmetries of differential equations, and on the analysis of some invariant
quantities.

The concept of symmetry, in everyday language, refers to a sense of har-
monious and beautiful proportion and balance. In mathematics, a symme-
try is just a transformation which does not change a mathematical object!
The set of symmetries of an object is a group.

In mathematical physics, symmetry, with the meaning of invariance un-
der suitable transformations, has become one of the most powerful, elegant
and useful tools for the formulation of the laws of nature. For instance, the
reproducibility of experiments in different places at different times relies
on the invariance of the laws of nature under space translation and rotation
(homogeneity and isotropy of space), as well as time translation (homo-
geneity of time) [66]. Without such regularities, physical events probably
would remain out of our knowledge, and their formulation would be im-
possible. An important implication of symmetries is the existence of conser-
vation laws. This connection has been proved by Emmy Noether [64] in her
famous theorem, which states that for every suitable continuous symmetry
there is a corresponding conserved quantity.

Towards the end of the nineteenth century, Sophus Lie realized that
many of the available integration techniques for solving differential equa-
tions could be unified and extended using group theory. He introduced the
notion, known now as Lie group, in order to study the solutions of ordinary
differential equations [54, 55], and showed the following main property: the
order of an ordinary differential equation can be reduced by one if it is in-
variant under a one–parameter Lie group of point transformations. The Lie
symmetry methods are central in the modern approach to nonlinear ordi-
nary differential equations. Lie devoted the remainder of his mathematical
career to investigate these continuous groups of transformations leaving
differential equations invariant, creating what is now called the symmetry
analysis of differential equations that had an impact on many areas of mathe-
matically based sciences.

In Chapter 2, the basic elements of the theory of Lie groups of trans-
formations of differential equations are presented to keep this thesis self–
contained. Lie’s theory enables one to derive solutions of differential equa-
tions in a completely algorithmic way without appealing to special lucky
guesses, and introduces the notion of Lie point symmetry of a system as a
local group of transformations that maps every solution of the system to
another solution of the same system. Elementary examples of Lie groups
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are translations, rotations and scalings. For any Lie group of point trans-
formations there exists a set of privileged variables (the canonical variables)
in terms of which the Lie group expresses in its simplest form; these play a
crucial role in the proof of some theorems presented in this thesis. The ap-
plication of Lie’s theory to differential equations is completely algorithmic;
however, it usually involves a lot of cumbersome and tedious calculations.
For instance, in looking for symmetries of a system of partial differential
equations, it is not uncommon to have to handle hundreds of equations to
find a single solution. In this thesis, most of the calculations were made by
using powerful Computer Algebra Systems (CAS) like Mathematicar [94]
(commercial) and Reduce [37] (open source), also using specific packages
for the necessary algebraic manipulations [3, 68].

The key idea of Lie’s theory of symmetry analysis of differential equa-
tions relies on the invariance of the equation under a transformation of
independent and dependent variables. This transformation forms a local
group of point transformations establishing a diffeomorphism on the space
of independent and dependent variables, mapping solutions of the equa-
tions to other solutions. Any transformation of the independent and de-
pendent variables in turn induces a transformation of the derivatives. Lie
groups are intimately connected to Lie algebras [28, 40], and a brief sketch
about Lie algebras realized in terms of generators of Lie groups of transfor-
mations is provided. The algebraic structure of the admitted Lie symme-
tries is crucial in some theorems presented in the subsequent chapters.

In Chapter 3, some introductory facts about first order systems of par-
tial differential equations, with special emphasis on quasilinear ones, are
recalled. In view of the results presented in Chapter 5, we also recall some
known results concerned with the construction of mappings from a given
(source) system of differential equations to another equivalent (target) one
[6, 19, 22, 23, 25, 26, 39, 65, 66, 80]. By considering general nonautonomous
and/or nonhomogeneous first order quasilinear systems of partial differ-
ential equations it has been shown that their reduction to autonomous and
homogeneous quasilinear form is possible if and only if a suitable algebra
of point symmetries is admitted.

Since in many applications we have differential equations involving ar-
bitrary elements (constants or functions), so that one often needs to deal
with classes of differential equations, it may be convenient to use equivalence
transformations. For instance, if one is interested in identifying the sys-
tems of balance laws (possibly nonautonomous) that can be transformed by
an invertible point transformation to systems of autonomous conservation
laws, equivalence transformations, i.e., point transformations that preserve
the differential structure of the equations in the class but may change the
form of the constitutive functions and/or parameters, provide useful.

Equivalence transformations live in an augmented space of indepen-
dent, dependent and additional variables representing values taken by the
arbitrary elements. The algorithm for the determination of such transfor-
mations consists of the following steps:

• consider the augmented space where the independent variables, the
dependent variables and the arbitrary functions live;

• assume the arbitrary parameters determining the class of differential
equations as dependent variables;
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• impose, by using Lie infinitesimal criterion [76], the invariance of the
class in the augmented space;

• project the admitted equivalence transformations into the space of in-
dependent and dependent variables and integrate the corresponding
Lie’s equations, so determining some finite transformations mapping
the system to an equivalent one with the same differential structure
but involving different arbitrary elements.

In Chapter 4, this general procedure has been applied to a class of (3+1)–
dimensional systems of first order partial differential equations consisting
of a linear conservation law and four general balance laws involving some
arbitrary continuously differentiable functions. The aim is to identify, for
a given equivalence transformation, the elements of the class that can be
mapped to a system of autonomous conservation laws. The equivalence
transformations are determined, and the finite transformations correspond-
ing to the admitted generators are given. By constructing the finite trans-
formations corresponding to a suitable linear combination of the admitted
Lie point symmetries, under particular assumptions, a model of physical
interest has been considered: an ideal gas in a non–inertial frame rotating
with constant angular velocity around the vertical axis and subject to grav-
ity and Coriolis forces, that can be mapped to an equivalent system where
gravity and Coriolis forces disappear.

In Chapter 5, we consider nonlinear first order systems of differential
equations, and investigate their reduction to a simpler form. At first, the re-
duction to an equivalent first order autonomous and homogeneous quasi-
linear form is considered. A theorem providing necessary conditions is
given, and the reduction to quasilinear form is performed by construct-
ing the canonical variables associated to the Lie point symmetries admitted
by the nonlinear system. The fact that the conditions are only necessary is
proved by exhibiting a nonlinear system satisfying the hypotheses of the
theorem that is not reducible to quasilinear form. Several examples of first
order systems of nonlinear partial differential equations that can be trans-
formed, under suitable conditions, to quasilinear autonomous and homo-
geneous systems are given. The nonlinear first order systems are obtained
from second order (1+1)–, (2+1)– and (3+1)–dimensional Monge–Ampère
equations. In the second part of Chapter 5, a general nonlinear system of
first order partial differential equations involving the derivatives of the un-
known variables in polynomial form is considered, and a theorem giving
necessary and sufficient conditions in order to map it to an autonomous sys-
tem polynomially homogeneous in the derivatives is established. The the-
orem involves the Lie point symmetries admitted by the nonlinear source
system, and the proof is constructive, in the sense that it leads to the algo-
rithmic construction of the invertible mapping performing the task. First
order nonlinear systems polynomial in the derivatives where the theorem
applies are considered; several classes of first order Monge–Ampère sys-
tems, either with constant coefficients or with coefficients depending on
the field variables, provided that the coefficients entering their equations
satisfy some constraints, are reduced to quasilinear (or linear) form.

Chapter 6 faces the decoupling problem of general quasilinear first or-
der systems. In fact, for quasilinear first order systems, it may be inter-
esting, from a computational point of view, to look for the conditions (if
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any) leading to their possible decoupling into smaller non–interacting sub-
systems (full decoupling), or their reduction to a set of smaller subsystems
that can be solved separately in hierarchy (partial decoupling). In litera-
ture, the problem has been analyzed by Nijenhuis [63] who, in the case of
strictly hyperbolic systems, provided necessary and sufficient conditions
for the decoupling into non–interacting one–dimensional subsystems re-
quiring the vanishing of the corresponding Nijenhuis tensor. Later, other
results have been given by Bogoyavlenskij [9, 10], who provided necessary
and sufficient conditions, with a geometric formalism, by using Nijenhuis
[63] and Haantjes [36] tensors. In the beginning of Chapter 6, we consid-
ered the decoupling problem of hyperbolic quasilinear first order systems
in two independent variables and two or three dependent variables that can
be in principle nonautonomous and/or nonhomogeneous. By means of a
direct approach, we derived the conditions on the source system and the
transformation allowing us to obtain a system that results partially or fully
decoupled in some subsystems. Such conditions are written in terms of the
eigenvalues and eigenvectors of the coefficient matrix. The results can be
applied to the class of Galilean first order systems in two and three depen-
dent variables. From a physical point of view, in the family of 2×2 Galilean
first order systems the one–dimensional Euler equations of barotropic flu-
ids which, with a suitable constitutive law, are mapped to the partially de-
coupled form, have been characterized.

In the rest of Chapter 6, a generalization of the results found by the di-
rect approach for the decoupling problem in the case of quasilinear first
order systems involving two or three dependent variables is presented. At
first, we discuss general autonomous and homogeneous quasilinear first
order systems (either hyperbolic or not), and prove the necessary and suf-
ficient conditions for the decoupling in two or more subsystems. Then,
we extend the analysis also to the case of nonhomogeneous and/or nonau-
tonomous systems. The conditions, as one expects, involve just the proper-
ties of the eigenvalues and the eigenvectors (together with the generalized
eigenvectors, if needed) of the coefficient matrix; in particular, the condi-
tions for the full decoupling of a hyperbolic system in non–interacting sub-
systems have a physical interpretation since require the vanishing both of
the change of characteristic speeds of a subsystem across a wave of the other
subsystems, and of the interaction coefficients between waves of different
subsystems. Moreover, when the required decoupling conditions are sa-
tisfied, we have also the differential constraints whose integration provides
the variable transformation leading to the (partially or fully) decoupled sys-
tem. All the results are extended to the decoupling of nonhomogeneous
and/or nonautonomous quasilinear first order systems. Some examples of
physical interest where the procedure works are also given. The theorem
was applied to the one–dimensional Euler equations of an ideal gas with
the special value of the adiabatic index Γ = 3 [17, p. 88], and to a nonlin-
ear model describing the motion of a moving threadline with a particular
constitutive law for the tension.

Most of the original results presented in this thesis are contained in the
papers [31, 32, 33, 34, 35].
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2 Lie groups of transformations

IN this Chapter, also to fix the notation that we will use throughout this
thesis, we give a brief account of the basic concepts of Lie groups theory

of differential equations; the interested reader may find a more detailed
exposition in several well known monographies [3, 5, 6, 7, 8, 14, 16, 42, 43,
44, 45, 62, 73, 74, 75, 76, 87].

2.1 Basic theory of Lie groups of transformations

Definition 2.1.1 (Group of transformations). Let us consider a domain D ⊆
RN and a subset S ⊆ R. The set of transformations

z? = Z(z; a), Z : D × S → D, (2.1)

depending on the parameter a, forms a one–parameter group of transforma-
tions on D if:

1. For each value of the parameter a ∈ S the transformations are one–to–one
onto D;

2. S with the law of composition µ : D ×D → D is a group with identity e;

3. Z(z; e) = z, ∀ z ∈ D;

4. Z(Z(z; a); b) = Z(z;µ(a, b)), ∀ z ∈ D, ∀ a, b ∈ S.

Definition 2.1.2 (Lie group of transformations). The group of transformations
(2.1) defines a one–parameter Lie group of transformations if, in addition to
satisfying the axioms of the previous definition,

1. a is a continuous parameter, i.e., S is an interval in R;

2. Z is C∞ with respect to z in D and an analytic function of a in S;

3. the group operation µ(a, b) and the inversion a−1 are analytic functions
∀ a, b ∈ S.

Due to the analyticity of the group operation µ, it is always possible to
reparametrize the Lie group in such a way the group operation becomes
the ordinary sum in R so that e = 0.

Expanding (2.1) in powers of a around a = 0, we get (in a neighbour-
hood of a = 0):

z? = z + a
∂Z(z; a)

∂a

∣∣∣∣
a=0

+
a2

2

∂2Z(z; a)

∂a2

∣∣∣∣
a=0

+ · · · =

= z + a
∂Z(z; a)

∂a

∣∣∣∣
a=0

+O(a2).

(2.2)
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By setting

ζ(z) =
∂Z(z; a)

∂a

∣∣∣∣
a=0

, (2.3)

the relation
z? = z + aζ(z) (2.4)

defines the Lie infinitesimal transformation; the components of ζ(z) are called
the infinitesimals of (2.1).

Lie’s First Fundamental Theorem ensures that the infinitesimal trans-
formations contain the essential information for characterizing a one–para-
meter Lie group of transformations.

Theorem 2.1.1 (First Fundamental Theorem of Lie). The Lie group of trans-
formations (2.1) can be found as solution of the initial value problem for the system
of first order differential equations

dz?

da
= ζ(z?), z?(0) = z. (2.5)

Proof. If z? = Z(z; a), taking into account that

Z(z; a+ ε) = Z(z?; ε), (2.6)

and expanding both sides in powers of ε around ε = 0 we get:

Z(z; a+ ε) = Z(z; a) + ε
∂Z(z; a)

∂a
+O(ε2) =

= z? + ε
dz?

da
+O(ε2),

Z(z?; ε) = Z(z?; 0) + ε
∂Z(z?; ε)

∂ε

∣∣∣∣
ε=0

+O(ε2) =

= z? + εζ(z?) +O(ε2),

(2.7)

where z? is given by (2.1).
By comparing these expressions it follows that z? = Z(z; a) satisfies the

initial value problem (2.5).
Conversely, since the infinitesimals ζ and their first order partial deriva-

tives are continuous, the Cauchy existence and uniqueness theorem for the
initial value problem (2.5) implies that the solution of (2.5) exists and is
unique. This solution has to be (2.1), and this completes the proof.

Theorem 2.1.1 means that the infinitesimal transformation uniquely
characterizes the Lie group of point transformations, and so it is justified
the term infinitesimal generator of the group given to ζ(z).

To the infinitesimal generator ζ(z) (which is a vector field) of the one–
parameter Lie group of transformations (2.1) it is associated the first order
differential operator (the symbol in Lie’s notation)

Ξ = ζ(z) ·∇ = ζ1(z)
∂

∂z1
+ · · ·+ ζN (z)

∂

∂zN
. (2.8)
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For any differentiable function F (z) it is

Ξ(F ) = ζ(z) ·∇F = ζ1(z)
∂F

∂z1
+ · · ·+ ζN (z)

∂F

∂zN
, (2.9)

and, in particular,
Ξ(z) = ζ(z). (2.10)

A one–parameter Lie group of transformations, which by Theorem 2.1.1
is equivalent to its infinitesimal transformation, is also equivalent to its in-
finitesimal operator.

The following theorem shows that the use of the infinitesimal operator
leads to an algorithm for finding the explicit solution of the initial value
problem (2.5).

Theorem 2.1.2. The one–parameter Lie group of transformations (2.1) is equiva-
lent to

z? = exp(aΞ)(z) = z + aΞ(z) +
a2

2
Ξ2(z) + · · · =

∞∑
k=0

ak

k!
Ξk(z), (2.11)

where the operator Ξ is defined by (2.8), and Ξk(z) = Ξ
(
Ξk−1(z)

)
; in particular,

it is Ξ0(z) = z.

Proof. Let us have

Ξ = ζ1(z)
∂

∂z1
+ · · ·+ ζN (z)

∂

∂zN
, (2.12)

and
Ξ? = ζ1(z?)

∂

∂z?1
+ · · ·+ ζN (z?)

∂

∂z?N
, (2.13)

where z? = Z(z; a). By expanding (2.1) in Taylor series around a = 0, one
obtains:

z? =
∞∑
k=0

ak

k!

∂kZ(z; a)

∂ak

∣∣∣∣
a=0

=

∞∑
k=0

ak

k!

dkz?

dak

∣∣∣∣
a=0

. (2.14)

Since for any differentiable function F (z) it is

dF (z?)

da
=

N∑
i=1

∂F (z?)

∂z?i

dz?i
da

=
N∑
i=1

ζi(z?)
∂F (z?)

∂z?i
= Ξ? (F (z?)) , (2.15)

in particular, it follows that

dz?

da
= Ξ?(z?),

d2z?

da2
=

d

da

(
dz?

da

)
= Ξ? (Ξ?(z?)) = Ξ?2 (z?) ,

(2.16)

and, more in general:

dkz?

dak
= Ξ?k (z?) , k ∈ N. (2.17)
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From (2.17) it follows:

dkz?

dak

∣∣∣∣
a=0

= Ξk (z) , k ∈ N, (2.18)

which gives the (2.11).

Henceforth, the Taylor series expansion about a = 0 of a function
Z(z; a), which defines the Lie group of transformations (2.1), is determined
by the coefficient of its O(a) term, i.e., by the infinitesimals ζ(z).

Thus, one can find explicitly a one–parameter Lie group of transforma-
tions from its infinitesimal transformation, by expressing the group in terms
of a power series (2.11), called Lie series, or by solving the initial value prob-
lem (2.5).

Now, we can introduce the concept of invariance of a function with re-
spect to a Lie group of transformations, and prove the related invariance
criterion.

Definition 2.1.3. An infinitely differentiable function F (z) is said to be an in-
variant function (or, simply, an invariant) of the Lie group of transformations
(2.1) if and only if for any group of transformations (2.1) the condition

F (z?) ≡ F (z) (2.19)

holds true.

If F (z) is an invariant function of (2.1), then it is simply called an invari-
ant of (2.1). The invariance of a function is characterized in a very simple
way by means of the infinitesimal generator of the group, as the following
theorem shows.

Theorem 2.1.3. F (z) is invariant under (2.1) if and only if

Ξ(F (z)) = 0. (2.20)

It can be also defined the invariance of a surface of RN with respect to a
Lie group. A surface F (z) = 0 is said to be an invariant surface with respect
to the one–parameter Lie group (2.1) if F (z?) = 0 when F (z) = 0.

As a consequence of the Theorem 2.1.3, the following theorem immedi-
ately follows.

Theorem 2.1.4. A surface F (z) = 0 is invariant with respect to the group (2.1) if
and only if

Ξ(F (z)) = 0 when F (z) = 0. (2.21)

2.2 Canonical variables

For any Lie group there exists a set of privileged variables (canonical
variables) in terms of which the Lie group (and the associated infinitesimal
generator) expresses in its simplest form.

Given in RN the one–parameter Lie group of transformations (2.1), let
us suppose to make the change of variables defined by the one–to–one and
C1 transformation:

y = Y(z), y = (y1, . . . , yN ). (2.22)
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If

Ξ =
N∑
i=1

ζi(z)
∂

∂zi
(2.23)

is the infinitesimal generator in terms of the coordinates z, the correspond-
ing generator in terms of y is

Ξ̃ =
N∑
i=1

ζ̃i(y)
∂

∂yi
, (2.24)

where, in order to have the same group action, it is Ξ = Ξ̃ with ζ̃i(y) =
Ξ (yi) (i = 1, . . . , N ). In fact, by using the chain rule, we have:

Ξ =
N∑
i=1

ζi(z)
∂

∂zi
=

N∑
i,j=1

ζi(z)
∂yj
∂zi

∂

∂yj
=

N∑
j=1

ζ̃j(y)
∂

∂yj
= Ξ̃, (2.25)

where

ζ̃j(y) =

N∑
i=1

ζi(z)
∂yj
∂zi

= Ξ (yj) , j = 1, . . . , N. (2.26)

If we choose the function Y(z) such that the conditions

Ξ(Yi(z)) = 0, i = 1, . . . , N − 1,

Ξ(YN (z)) = 1
(2.27)

hold true, then the infinitesimal generator expresses as

Ξ =
∂

∂yN
, (2.28)

and the Lie group writes as

y?i = yi, i = 1, . . . , N − 1,

y?N = yN + a.
(2.29)

The canonical variables of Lie groups of point transformations play a
crucial role in the proof of some theorems presented in this thesis.

2.3 Multi parameter Lie groups

A Lie group of transformations may depend as well on many parame-
ters,

z? = Z(z; a), (2.30)

where a = (a1, a2, . . . , ar) ∈ S ⊆ Rr. The r × N infinitesimal matrix χ(z)
with entries

χjα(z) =
∂z?j
∂aα

∣∣∣∣
a=0

=
∂Zj(z,a)

∂aα

∣∣∣∣
a=0

(2.31)

(α = 1, . . . , r; j = 1, . . . , N ) may be constructed, and, for each parameter
aα of the r–parameter Lie group of transformations (2.30), the infinitesimal
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generator Ξα,

Ξα =
N∑
j=1

χjα(z)
∂

∂zj
, α = 1, . . . , r, (2.32)

is defined. The infinitesimal generator

Ξ =

r∑
α=1

σαΞα =

N∑
j=1

ζj(z)
∂

∂zj
, ζj(z) =

r∑
α=1

σαχ
j
α(z), (2.33)

where σ1, . . . , σr are fixed real constants, in turn defines a one–parameter
subgroup of an r–parameter Lie group of transformations.

2.4 Lie groups of differential equations

In considering Lie groups of point transformations associated to a given
differential equation E involving n independent variables x = (x1, . . . , xn)
∈ Rn, and m dependent variables u = (u1, . . . , um) ∈ Rm, it is convenient
to distinguish the independent variables from the dependent ones, so that
we can write such a group of transformations in the form

x? = X(x,u; a), u? = U(x,u; a), (2.34)

acting on the space Rn+m of the variables (x,u). Also, let

u = Θ(x) ≡ (Θ1(x), . . . ,Θm(x)) (2.35)

be a solution of the equation E .
A Lie group of transformations of the form (2.34) admitted by E has the

two equivalent properties:

• a transformation of the group maps any solution of E into another
solution of E ;

• a transformation of the group leaves E invariant, say, E reads the same
in terms of the variables (x,u) and in terms of the transformed vari-
ables (x?,u?).

Since a differential equation involves, in addition to x and u, the derivatives
up to some finite order of the latter with respect to the former ones, we have
to determine the transformation of such derivatives. This is accomplished
by prolonging the action of the group. The transformations (2.34) determine
suitable transformations for the derivatives of the dependent variables u
with respect to the independent variables x.

Let u(1) denote the vector whose m · n components are all first order
partial derivatives of u with respect to x,

u(1) ≡
(
∂u1

∂x1
, . . . ,

∂u1

∂xn
, . . . ,

∂um
∂x1

, . . . ,
∂um
∂xn

)
, (2.36)

and, in general, let u(k) denote the vector whose components are the

m ·
(
n+ k − 1

k

)
k–th order partial derivatives of u with respect to x.
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The transformations of the derivatives of the dependent variables (ob-
tained by requiring that the transformations preserve the contact conditions)
lead to natural extensions (prolongations) of the one–parameter Lie group of
transformations (2.34). While the one–parameter Lie group of transforma-
tions (2.34) acts on the space (x,u), the extended group acts on the space
(x,u,u(1)), and, more in general, on the jet space (x, u, u(1), . . ., u(k)). Since
all the information about a Lie group of transformations is contained in its
infinitesimal generator, we need to compute its prolongations:

• the first order prolongation

Ξ(1) = Ξ +
m∑
A=1

n∑
i=1

ηA[i](x,u,u
(1))

∂

∂uA,i
, uA,i =

∂uA
∂xi

, (2.37)

with

ηA[i](x,u,u
(1)) =

DηA

Dxi
− Dξj

Dxi

∂uA
∂xj

; (2.38)

• the general k–th order prolongation recursively defined by

Ξ(k) = Ξ(k−1) +
m∑
A=1

n∑
i1=1

. . .
n∑

ik=1

ηA[i1...ik]

∂

∂uA,i1...ik
, (2.39)

where uA,i1...ik =
∂kuA

∂xi1 . . . ∂xik
, and ηA[i1...ik] recursively defined by the

relation

ηA[i1...ik] =
DηA[i1...ik−1]

Dxik
− uA,i1...ik−1j

Dξj

Dxik
. (2.40)

In (2.38) and (2.40) the Lie derivative

D

Dxi
=

∂

∂xi
+
∂uA
∂xi

∂

∂uA
+

∂2uA
∂xi∂xj

∂

∂uA,j
+ . . . (2.41)

has been introduced, and the Einstein convention of summation over re-
peated indices used.

The infinitesimals of the Lie group of transformations leaving a given
system of differential equations invariant can be found by means of the
straightforward algorithm that will be described below. Remarkably, the
search of one–parameter Lie groups of transformations leaving differen-
tial equations invariant leads usually to obtain r–parameter Lie groups of
transformations.

2.5 Lie’s algorithm

Let
∆
(
x,u,u(1), . . . ,u(k)

)
= 0 (2.42)

(∆ = (∆1, . . . ,∆q)) be a system of q differential equations of order k, with
independent variables x ∈ Rn and dependent variables u ∈ Rm. Suppose
that the system (2.42) is written in normal form, i.e., it is solved with respect
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to some partial derivatives of order kν , for ν = 1, . . . , q:

∆ν

(
x,u,u(1), . . . ,u(k)

)
≡ uAν ,i1...ikν − Fν(x,u,u(1), . . . ,u(k)) = 0. (2.43)

The equations (2.43) can be considered as characterizing a manifold in the
jet space, the latter having dimension equal to

n+m
k∑

h=0

(
n+ h− 1

n− 1

)
= n+m

(
n+ k

k

)
. (2.44)

It is said that the one–parameter Lie group of transformations (2.34)
leaves the system (2.43) invariant (is admitted by (2.43)) if and only if its k–
th prolongation leaves invariant the manifold of the jet space defined by
(2.43).

Theorem 2.1.4 allows to prove the following important theorem, which
leads directly to the algorithm for the computation of the infinitesimals ad-
mitted by a given differential system.

Theorem 2.5.1 (Infinitesimal Criterion for differential equations). Let

Ξ = ξi(x,u)
∂

∂xi
+ ηA(x,u)

∂

∂uA
(2.45)

be the infinitesimal generator corresponding to (2.34), and Ξ(k) the k–th extended
infinitesimal generator. The group (2.34) is admitted by the system (2.43) if and
only if

Ξ(k)
(
∆
(
x,u,u(1), . . . ,u(k)

))
= 0

when ∆
(
x,u,u(1), . . . ,u(k)

)
= 0.

(2.46)

If the differential system is in polynomial form in the derivatives, the
invariance conditions (2.46) are polynomials in the components of (u(1), . . .,
u(k)), with coefficients expressed by linear combinations of the unknowns
ξi, ηA (i = 1, . . . , n; A = 1, . . . ,m) and their partial derivatives. After
using (2.43) to eliminate the derivatives uAν ,i1...ikν , the equations can be
splitted with respect to the components of the remaining derivatives of
u that can be arbitrarily varied. By equating to zero the coefficients of
these partial derivatives, one obtains an overdetermined system of linear
differential equations for the infinitesimals (the so called system of deter-
mining equations), whose integration leads to the infinitesimals of the group.
The infinitesimals involve arbitrary constants (and in some cases arbitrary
functions); therefore, we have de facto r–parameter Lie groups (infinite–
parameter Lie groups when arbitrary functions are involved).

Remark 2.5.1. In this thesis we will deal mainly with Lie groups of transfor-
mations admitted by differential equations with infinitesimals depending on the
independent and dependent variables only. These are called local Lie point sym-
metries. Symmetries in which the infinitesimals may depend also on first (respec-
tively, higher) order derivatives of the dependent variables with respect to the in-
dependent variables are contact (respectively, generalized) symmetries, and sym-
metries with infinitesimals depending also on integrals of dependent variables are
called nonlocal symmetries.
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2.6 Lie algebras

Lie groups are intimately connected to Lie algebras [28, 40]. Let us recall
some basic notions about Lie algebras realized in terms of generators of Lie
groups admitted by differential equations.

Let K be a field. A Lie algebra L over K is a vector space over K endowed
with a bilinear map (Lie bracket or commutator)

[·, ·] : L× L −→ L,

(x, y) 7−→ [x, y],
(2.47)

satisfying the following properties:

[x, x] = 0 ∀x ∈ L,
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity).

(2.48)

Due to the bilinearity of the Lie bracket, it is

0 = [x+ y, x+ y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x], (2.49)

whereupon, using (2.48)1, it follows

[x, y] = −[y, x] ∀x, y ∈ L (antisymmetry). (2.50)

Moreover, (2.50) implies (2.48)1 if K has not characteristic 2.
The dimension of a Lie algebra L is its dimension as a vector space; if it

has finite dimension r, then it is often denoted by Lr.
A Lie algebra L is Abelian if [x, y] = 0 for all x, y ∈ L.
Given a Lie algebra L, a Lie subalgebra of L is a vector space L′ ⊆ L such

that [x, y] ∈ L′ for all x, y ∈ L′.
An ideal of a Lie algebra L is a subspace J of L such that

[x, y] ∈ J for all x ∈ L, y ∈ J. (2.51)

The Lie algebra L and {0} are ideals of L, called the trivial ideals of L. An-
other important example of ideal of L is the centre of L, defined by

Z(L) = {x ∈ L : [x, y] = 0 ∀y ∈ L}. (2.52)

It can be noted that L = Z(L) if and only if L is Abelian.

Remark 2.6.1. Real (K = R) and complex (K = C) Lie algebras are of special rel-
evance in the application of Lie groups of transformations of differential equations.
In the following we shall restrict to consider real Lie algebras.

The commutator of two generators Ξα and Ξβ is the first order operator
defined by

[Ξα,Ξβ] = ΞαΞβ − ΞβΞα =
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=
N∑

i,j=1

[(
ζiα(z)

∂

∂zi

)(
ζjβ(z)

∂

∂zj

)
−
(
ζiβ(z)

∂

∂zi

)(
ζjα(z)

∂

∂zj

)]
=

=

N∑
j=1

ζ̃j(z)
∂

∂zj
, (2.53)

where

ζ̃j(z) =

N∑
i=1

[
ζiα(z)

∂ζjβ(z)

∂zi
− ζiβ(z)

∂ζjα(z)

∂zi

]
. (2.54)

As a consequence of this definition, the operation of commutation is anti-
symmetric,

[Ξα,Ξβ] = −[Ξβ,Ξα], (2.55)

bilinear,
[aΞα + bΞβ,Ξγ ] = a[Ξα,Ξγ ] + b[Ξβ,Ξγ ] (2.56)

(a, b constants), and satisfies the Jacobi identity

[Ξα, [Ξβ,Ξγ ]] + [Ξβ, [Ξγ ,Ξα]] + [Ξγ , [Ξα,Ξβ]] = 0. (2.57)

It follows that a vector space L of generators is a Lie algebra if the commu-
tator [Ξα,Ξβ] of any two generators Ξα ∈ L and Ξβ ∈ L belongs to L.

Lemma 2.6.1. The commutator of two generators is invariant with respect to any
invertible change of variables.

Proof. Let y = g(z) be a change of variables. It results

Ξα = ζiα
∂

∂zi
, Ξ̃α = ζiα

∂yj
∂zi

∂

∂yj
,

Ξβ = ζiβ
∂

∂zi
, Ξ̃β = ζiβ

∂yj
∂zi

∂

∂yj
.

Hence,

[
Ξ̃α, Ξ̃β

]
=

(
ζ̃jα
∂ζ̃kβ
∂yj
− ζ̃jβ

∂ζ̃kα
∂yj

)
∂

∂yk
=

=

(
ζiα
∂yj
∂zi

∂

∂yj

(
ζ`β
∂yk
∂z`

)
− ζiβ

∂yj
∂zi

∂

∂yj

(
ζ`α
∂yk
∂z`

))
∂

∂yk
=

=

(
ζiα
∂yj
∂zi

∂ζ`β
∂zm

∂zm
∂yj

∂yk
∂z`
− ζiβ

∂yj
∂zi

∂ζ`α
∂zm

∂zm
∂yj

∂yk
∂z`

)
∂

∂yk
=

=

((
ζiα
∂ζ`β
∂zm

− ζiβ
∂ζ`α
∂zm

)
∂zm
∂yj

∂yj
∂zi

∂yk
∂z`

)
∂

∂yk
=

=

((
ζiα
∂ζ`β
∂zm

− ζiβ
∂ζ`α
∂zm

)
δmi

∂yk
∂z`

)
∂

∂yk
=

=

((
ζiα
∂ζ`β
∂zi
− ζiβ

∂ζ`α
∂zi

)
∂yk
∂z`

)
∂

∂yk
= ˜[Ξα,Ξβ].
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Theorem 2.6.1. If a regularly assigned manifold F (z) = 0, z ∈ RN , is invariant
with respect to generators Ξα and Ξβ , then it is invariant with respect to their
commutator [Ξα,Ξβ].

Proof. Since the manifold F (z) = 0 is invariant with respect to the Lie
groups generated by Ξα and Ξβ , it is

Ξα(F (z)) = Λα(z)F (z),

Ξβ(F (z)) = Λβ(z)F (z),
(2.58)

where Λα(z) and Λβ(z) are suitable Lagrange multipliers. Then,

[Ξα,Ξβ] (F (z)) = ΞαΞβ(F (z))− ΞβΞα(F (z)) =

= Ξα(Λβ(z)F (z))− Ξβ(Λα(z)F (z)) =

= Ξα(Λβ(z))F (z) + Λβ(z)Ξα(F (z))

− Ξβ(Λα(z))F (z)− Λα(z)Ξβ(F (z)) =

= (Ξα(Λβ(z))− Ξβ(Λα(z)))F (z) = Λ(z)F (z),

(2.59)

so proving that the manifold F (z) is invariant with respect to [Ξα,Ξβ].

To extend the previous theorem to generators of Lie groups admitted by
differential equations we need the following theorem.

Theorem 2.6.2. The operation of prolongation commutes with the operation of
taking a commutator.

Proof. To prove the theorem it is sufficient, due to the recursive definition
of the higher order prolongations, to limit ourselves to first order prolonga-
tions. Let us consider the generators Ξα and Ξβ involving the variables x
and u. Since the operations of commutation and prolongation are invariant
with respect to a change of variables, let us introduce the canonical vari-
ables of the generator Ξα (still denoting them with x and u to simplify the

notation), whereupon the generator Ξα may be written as
∂

∂x1
, whereas let

us write the generator Ξβ as

Ξβ = ξi
∂

∂xi
+ ηA

∂

∂uA
. (2.60)

It results

[Ξα,Ξβ] =
∂ξi

∂x1

∂

∂xi
+
∂ηA

∂x1

∂

∂uA
, (2.61)

whereas the first order prolonged operators become

Ξ(1)
α = Ξα,

Ξ
(1)
β = Ξβ + ηA[k]

∂

∂uA,k
,

(2.62)

where uA,k denotes the partial derivative of uA with respect to the variable
xk and we recall that it is

ηA[k] =
DηA

Dxk
− Dξj

Dxk
uA,j . (2.63)
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Therefore, [
Ξ(1)
α ,Ξ

(1)
β

]
= [Ξα,Ξβ] +

[
Ξα, η

A
[k]

∂

∂uA,k

]
=

=
∂ξi

∂x1

∂

∂xi
+
∂ηA

∂x1

∂

∂uA
+
∂ηA[k]

∂x1

∂

∂uA,k
.

(2.64)

On the other hand, the prolongation of the commutator [Ξα,Ξβ] is

[Ξα,Ξβ](1) = [Ξα,Ξβ] + η̂A[k]

∂

∂uA,k
, (2.65)

where

η̂A[k] =
D

Dxk

(
∂ηA

∂x1

)
− D

Dxk

(
∂ξj

∂x1

)
uA,j =

=
∂

∂x1

(
DηA

Dxk
− Dξj

Dxk
uA,j

)
=
∂ηA[k]

∂x1
.

(2.66)

So it is
[Ξα,Ξβ](1) =

[
Ξ(1)
α ,Ξ

(1)
β

]
, (2.67)

which completes the proof.

In virtue of the previous results, the following theorem can be stated.

Theorem 2.6.3. If a differential equation E admits the generators Ξα and Ξβ , then
it admits also the generator [Ξα,Ξβ].

Proof. Immediate.

Remark 2.6.2. The set of the generators admitted by a differential equation E is a
vector space, because it is the space of solutions of the determining equations (that
are linear and homogeneous differential equations). The previous theorem implies
that such a vector space is also a Lie algebra. This algebra is called the principal
Lie algebra. The knowledge of the subalgebras of the principal Lie algebra of partial
differential equations allows one to construct and classify invariant solutions. In
the case of ordinary differential equations it permits the reduction of order.

If Lr is an r–dimensional Lie algebra of generators with a basis {Ξ1, . . .,
Ξr}, any generator X can be represented as

X = fαΞα, α = 1, . . . , r, (2.68)

where the fα’s are constant. Since Lr is closed under commutation, the
commutator of any two generators Ξα and Ξβ in the basis is a linear combi-
nation of the basis generators

[Ξα,Ξβ] = CγαβΞγ , (2.69)

where the constants Cγαβ are called structure constants, and equations (2.69)
are known as commutation relations.

Because of the antisymmetry of the commutator, the structure constants
are antisymmetric in the two lower indices,

Cγαβ = −Cγβα, (2.70)
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and, because of the Jacobi identity, they satisfy the Lie identity

CραβC
δ
ργ + CρβγC

δ
ρα + CργαC

δ
ρβ = 0. (2.71)

The structure constants do not change under a coordinate transforma-
tion, but they change if the basis is changed.

It is convenient to display the commutators of a Lie algebra through its
commutator table, whose (α, β)–th entry is [Ξα,Ξβ]: the commutator table
is an antisymmetric matrix. Moreover, the structure constants are easily
deduced from the commutator table.

The properties of Lie algebras are useful in the analysis of differential
equations. By knowing the structure constants of a Lie algebra we may
determine the so–called derived algebras. If L is a Lie algebra, then L(1) =
[L,L] (spanned by all possible Lie brackets of elements of L) is the first
derived algebra of L. By construction, L(1) is an ideal of L. The higher
order derived algebras are recursively defined as

L(n) = [L(n−1), L(n−1)]. (2.72)

An Abelian Lie algebra L verifies the condition L(1) = 0 or, in terms of
the commutators of two generators,

[Ξα,Ξβ] = 0, α, β = 1, . . . r. (2.73)

The notion of derived Lie algebra is useful to define solvable algebras. The
Lie algebra Lr is said to be solvable if there is a series

Lr ⊃ Lr−1 ⊃ . . . ⊃ L1, (2.74)

of subalgebras of respective dimensions r, r − 1, . . . , 1, such that Ls is an
ideal of Ls+1, s = 1, . . . , r − 1.

The Lie algebra Lr is solvable if and only if its derived algebra of a finite
order vanishes, i.e., L(n)

r = 0, 0 < n <∞. Any two–dimensional Lie algebra
is solvable.

The Lie algebra L is said to be simple if it has no proper ideals.
A Lie algebra is said to be semi–simple if it has no solvable ideals dif-

ferent from {0}. A Lie algebra is semi–simple if and only if it contains no
abelian ideals different from {0}. According to Cartan’s criterion [28], the
Lie algebra Lr with the structure constants cλµν is semi–simple if and only if

det ‖gµν‖ 6= 0, (2.75)

where ‖gµν‖ is the matrix with entries

gµν = cλµνc
γ
νλ, µ, ν = 1, . . . , r. (2.76)

An r–dimensional Lie algebra spanned by the infinitesimal generators
{Ξ1, . . . .Ξr} is solvable if it is possible to arrange the elements of the basis
in such a way

[Ξi,Ξj ] =

j−1∑
k=1

CkijΞk, 1 ≤ i < j ≤ r. (2.77)
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2.7 Examples of Lie symmetries admitted by ODE’s
and PDE’s

In this Section, some examples of the procedure leading to the determi-
nation of the Lie point symmetries admitted by ordinary and partial differ-
ential equations are given.

2.7.1 Symmetries of Blasius’ equation

Let us consider the nonlinear third order ordinary differential equation

∆ ≡ d3u

dx3
+

1

2
u
d2u

dx2
= 0, (2.78)

known as Blasius’s equation, and let us determine its Lie point symmetries.
We need the third order prolongation of the infinitesimal operator, say

Ξ(3) = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
+ η[1](x, u, u,1)

∂

∂u,1

+ η[2](x, u, u,1, u,2)
∂

∂u,2
+ η[3](x, u, u,1, u,2, u,3)

∂

∂u,3
,

(2.79)

where u,k =
dku

dxk
, and

η[1] =
∂η

∂x
+
∂η

∂u
u,1 −

(
∂ξ

∂x
+
∂ξ

∂u
u,1

)
u,1,

η[2] =
∂2η

∂x2
+

(
2
∂2η

∂x∂u
− ∂2ξ

∂x2

)
u,1 +

(
∂2η

∂u2
− 2

∂2ξ

∂x∂u

)
u2
,1

− ∂2ξ

∂u2
u3
,1 +

(
∂η

∂u
− 2

∂ξ

∂x

)
u,2 − 3

∂ξ

∂u
u,1u,2,

η[3] =
∂3η

∂x3
+

(
3
∂3η

∂x2∂u
− ∂3ξ

∂x3

)
u,1 + 3

(
∂3η

∂x∂u2
− ∂3ξ

∂x2∂u

)
u2
,1

+

(
∂3η

∂u3
− 3

∂3ξ

∂x∂u2

)
u3
,1 −

∂3ξ

∂u3
u4
,1 + 3

(
∂2η

∂x∂u
− ∂2ξ

∂x2

)
u,2

− 3
∂ξ

∂u
u2
,2 +

(
∂η

∂u
− 3

∂ξ

∂x

)
u,3 + 3

(
∂2η

∂u2
− 3

∂2η

∂x∂u

)
u,1u,2

− 6
∂2ξ

∂u2
u2
,1u,2 − 4

∂ξ

∂u
u,1u,3.

(2.80)

By requiring the invariance condition

Ξ(3)(∆)
∣∣∣
∆=0

= 0 (2.81)
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of (2.78), the following condition arises

2
∂3η

∂x3
+
∂2η

∂x2
u+

(
6
∂3η

∂x2∂u
+ 2

∂2η

∂x∂u
u− ∂2ξ

∂x2
u− 2

∂3ξ

∂x3

)
u,1

+

(
6
∂3η

∂x∂u2
− 6

∂3ξ

∂x2∂u
+
∂2η

∂u2
u− 2

∂2ξ

∂x∂u
u

)
u2
,1

+

(
2
∂3η

∂u3
− 6

∂3ξ

∂x∂u2
− ∂2ξ

∂u2
u

)
u3
,1 − 2

∂3ξ

∂u3
u4
,1

+

(
6
∂2η

∂x∂u
− 6

∂2ξ

∂x2
+
∂ξ

∂x
u+ η

)
u,2 − 6

∂ξ

∂u
u2
,2

+

(
6
∂2η

∂u2
− 18

∂2ξ

∂x∂u
+
∂ξ

∂u
u

)
u,1u,2 − 12

∂2ξ

∂u2
u2
,1u,2,

(2.82)

where the constraint ∆ = 0 has been taken into account to eliminate u,3.
The invariance condition (2.82) is a polynomial in the derivatives u,1 and
u,2 whose coefficients, involving the infinitesimals and their partial deriva-
tives, must vanish. Hence, a set of determining equations arises; these deter-
mining equations constitute a set of overdetermined linear partial differen-
tial equations that integrated provide the expression of the infinitesimals ξ
and η:

ξ(x, u) = c1 + c2x,

η(x, u) = −c2u,
(2.83)

where c1 and c2 are arbitrary constants. Due to this arbitrariness, we may
say that Blasius’ equation admits a 2–parameter Lie group of point trans-
formations spanned by the following vector fields:

Ξ1 =
∂

∂x
, Ξ2 = x

∂

∂x
− u ∂

∂u
. (2.84)

The infinitesimal operators (2.84) provide a basis of a vector space of di-
mensions 2, which is also a solvable Lie algebra, as it can be verified by
computing their Lie bracket,

[Ξ1,Ξ2] = Ξ1. (2.85)

2.7.2 Symmetries of linear heat equation

Let us consider the linear second order partial differential equation

∆ ≡ ∂u

∂x1
− ∂2u

∂x2
2

= 0 (2.86)

(interpreting x1 as the time, x2 as a space coordinate, and u(x1, x2) as a tem-
perature, (2.86) is the Fourier equation for heat conduction), and determine
its Lie point symmetries. We need the second order prolongation of the
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infinitesimal generator, say

Ξ(2) = ξ1(x1, x2, u)
∂

∂x1
+ ξ2(x1, x2, u)

∂

∂x2
+ η(x1, x2, u)

∂

∂u

+ η[1](x1, x2,u
(1))

∂

∂u,1
+ η[2](x1, x2, u,u

(1))
∂

∂u,2

+ η[11](x1, x2, u,u
(1),u(2))

∂

∂u,11
+ η[12](x1, x2, u,u

(1),u(2))
∂

∂u,12

+ η[22](x1, x2, u,u
(1),u(2))

∂

∂u,22
,

(2.87)

where u,i =
∂u

∂xi
, u,ij =

∂2u

∂xi∂xj
, and

η[i] =
∂η

∂xi
+
∂η

∂u
u,i −

(
∂ξ1

∂xi
+
∂ξ1

∂u
u,i

)
u,1 −

(
∂ξ2

∂xi
+
∂ξ2

∂u
u,i

)
u,2,

η[ij] =
∂2η

∂xi∂xj
+

∂2η

∂xi∂u
u,j +

∂2η

∂xj∂u
u,i −

∂2ξ1

∂xi∂xj
u,1 −

∂2ξ2

∂xi∂xj
u,2

+
∂2η

∂u2
u,iu,j −

(
∂2ξ1

∂xi∂u
u,1 +

∂2ξ2

∂xi∂u
u,2

)
u,j

−
(
∂2ξ1

∂xj∂u
u,1 +

∂2ξ2

∂xj∂u
u,2

)
u,i −

(
∂ξ1

∂u
u,1 +

∂ξ2

∂u
u,2

)
u,ij

−
(
∂2ξ1

∂u2
u,1 +

∂2ξ2

∂u2
u,2

)
u,iu,j +

∂η

∂u
uij −

∂ξ1

∂xj
u,1i −

∂ξ1

∂xi
u,1j

− ∂ξ2

∂xj
u,2i −

∂ξ2

∂xi
u,2j −

∂ξ1

∂u
(u,iu,1j + u,ju,1i)

− ∂ξ2

∂u
(u,iu,2j + u,ju,2i)

(2.88)

(i, j = 1, 2).
The invariance condition reads

Ξ(2)(∆)
∣∣∣
∆=0

=

=
∂η

∂x1
− ∂2η

∂x2
2

−
(

2
∂2η

∂x2∂u
+
∂ξ2

∂x1
− ∂2ξ2

∂x2
2

)
u,2

+

(
2
∂2ξ2

∂x2∂u
− ∂2η

∂u2

)
u2
,2 +

∂2ξ2

∂u2
u3
,2 + 2

∂ξ1

∂x2
u,12

+ 2
∂ξ1

∂u
u,2u,12 +

(
2
∂ξ2

∂x2
− ∂ξ1

∂x1
+
∂2ξ1

∂x2
2

)
u,22

+

(
2
∂2ξ1

∂x2∂u
+ 2

∂ξ2

∂u

)
u,2u,22 +

∂2ξ1

∂u2
u2
,2u,22 = 0,

(2.89)

where the equation (2.86) has been used to express u,1 in terms of u,22. A
polynomial in the derivatives u,2, u,12 and u,22 whose coefficients, involving
the infinitesimals and their partial derivatives, must vanish. By integrating
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the corresponding determining equations, we obtain the solution:

ξ1(x1, x2, u) = a1 + 2a3x1 + a4x
2
1,

ξ2(x1, x2, u) = a2 + a3x2 + a4x1x2 + a5x1,

η(x1, x2, u) = −a4

4
(x2

2 + 2x1)u− a5

2
x2u+ a6u+ f(x1, x2),

(2.90)

where a1, . . . , a6 are arbitrary constants, and f(x1, x2) a solution of equation
(2.86), i.e.,

f,1 − f,22 = 0. (2.91)

In this case, the generators live in an infinite–dimensional vector space (be-
cause of the occurrence of the function f ) that it is also a Lie algebra. It is
spanned by the infinitesimal operators:

Ξ1 =
∂

∂x1
, Ξ2 =

∂

∂x2
,

Ξ3 = 2x1
∂

∂x1
+ x2

∂

∂x2
,

Ξ4 = x2
1

∂

∂x1
+ x1x2

∂

∂x2
− x2

2 + 2x1

4
u
∂

∂u
,

Ξ5 = x1
∂

∂x2
− x2u

2

∂

∂u
,

Ξ6 = u
∂

∂u
, Ξf = f(x1, x2)

∂

∂u
.

(2.92)

By computing the Lie brackets of all the possible couples of generators, we
get the following list of non–zero commutators:

[Ξ1,Ξ3] = 2Ξ1, [Ξ1,Ξ4] = Ξ3 −
1

2
Ξ6

[Ξ1,Ξ5] = Ξ2, [Ξ2,Ξ3] = Ξ2,

[Ξ2,Ξ4] = Ξ5, [Ξ2,Ξ6] = −1

2
Ξ6,

[Ξ3,Ξ4] = 2Ξ4, [Ξ3,Ξ5] = Ξ5,

(2.93)

and
[Ξ1,Ξf ] = Ξf,1 , [Ξ2,Ξf ] = Ξf,2 ,

[Ξ3,Ξf ] = Ξg, [Ξ4,Ξf ] = Ξh,

[Ξ5,Ξf ] = −Ξm, [Ξ6,Ξf ] = Ξ−f ,

(2.94)

where
g(x1, x2) = 2x1f,1 + x2f,2,

h(x1, x2) = x2
1f,1 + x1x2f,2 +

x2
2 + 2x1

4
f,

m(x1, x2) = x1f,2 +
x

2
f.

(2.95)

The Lie brackets in (2.94) provide generators still belonging to the Lie al-
gebra, since −f , f,1, f,2, and the functions g(x1, x2), h(x1, x2), m(x1, x2),
defined by (2.95), satisfy the Fourier equation.



22 Lie groups of transformations

2.8 Use of Lie symmetries of differential equations

The knowledge of Lie groups of transformations admitted by a given
system of differential equations can be used

• to lower the order or possibly reduce the equation to quadrature, in
the case of ordinary differential equations;

• to determine particular solutions, called invariant solutions, or gener-
ate new solutions, once a special solution is known, in the case of
ordinary or partial differential equations.

2.8.1 Lowering the order of ODE’s

Lie showed that if a given ordinary differential equation admits a one–
parameter Lie group of point transformations then the order of the equation
can be lowered by one. Hence, the solution of the reduced equation and a
quadrature provide the solution of the original ordinary differential equa-
tion. If a given ordinary differential equation admits an r–parameter Lie
group of point transformations, the order of the equation can be lowered
by r if the corresponding Lie algebra is solvable: in this case the solution
of the original ordinary differential equation is found by solving the re-
duced equation plus r quadratures [8]; remarkably, one does not need to
determine all the intermediate ordinary differential equations of decreas-
ing order. For a first order ordinary differential equation the Lie’s method
yields the quadrature of the ordinary differential equation, or, equivalently,
enables us to find a first integral or an integrating factor.

Now, let us consider the application of Lie groups of point transforma-
tions to the study of a second or higher order ordinary differential equation

u,n = f(x, u, u,1, . . . , u,n−1), n ≥ 2, (2.96)

which, from a geometrical point of view, defines an (n + 1)–dimensional
manifold in the space (x, u, u,1, . . . , u,n).

Let us assume that the ordinary differential equation (2.96) admits a
one–parameter Lie group of point transformations

x? = x+ aξ(x, u) +O(a2),

u? = u+ aη(x, u) +O(a2)
(2.97)

with infinitesimal operator

Ξ = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
. (2.98)

In general, the lowering of the order of the n–th order ordinary differ-
ential equation (2.96) can be obtained either by introducing the canonical
variables or by constructing the differential invariants, the latter being in-
variants of the prolonged infinitesimal generators.

Reduction of order through canonical variables

Theorem 2.8.1. Suppose a nontrivial one–parameter Lie group of transformations
(2.97), with infinitesimal generator (2.98), is admitted by an n–th order ordinary
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differential equation (2.96), n ≥ 2. Let r(x, u), s(x, u) be the corresponding canon-
ical coordinates satisfying Ξ(r) = 0, Ξ(s) = 1. Then the n–th order ordinary
differential equation (2.96) reduces to an (n − 1)–th order ordinary differential
equation,

dn−1z

drn−1
= G

(
r, z,

dz

dr
, . . . ,

dn−2z

drn−2

)
, (2.99)

where
z =

ds

dr
. (2.100)

Proof. In terms of the canonical coordinates r(x, u) and s(x, u) it is

ds

dr
=
sx + suu,1
rx + ruu,1

, (2.101)

where the subscripts x and u denote the partial derivatives.
Due to

Ξ(r) = ξrx + ηru = 0,

relation (2.101) is nonsingular if u,1 6= η/ξ.
By differentiating (2.101), we get

d2s

dr2
=

1

rx + ruu,1

d
(
sx+suu,1
rx+ruu,1

)
dx

=

= u,2f1

(
r, s,

ds

dr

)
+ g1

(
r, s,

ds

dr

)
,

(2.102)

where

f1

(
r, s,

ds

dr

)
=

surx − sxru
(rx + ruu,1)3

,

g1

(
r, s,

ds

dr

)
=

1

rx + ruu,1

(
u3
,1(rusuu − suruu)

+ u2
,1(2rusxu + rxsuu − 2surxu − sxruu)

+ u,1(2rxsxu + rusxu − surxx) + (rxsxx − sxrxx)).

Solving (2.101) with respect to u,1, we have

u,1 =
sx − rx dsdr
ru

ds
dr − su

,

that, used in (2.102), gives

u,2 =
d2s

dr2
F1

(
r, s,

ds

dr

)
+G1

(
r, s,

ds

dr

)
,

with F1 = 1/f1 and G1 = −g1/f1. Since r and s are canonical coordinates,
it is rxsu − rusx 6= 0 and hence f1 6= 0. Proceeding inductively, we have

dks

drk
= u,kfk−1

(
r, s,

ds

dr

)
+ gk−1

(
r, s,

ds

dr
, . . . ,

dk−1s

drk−1

)
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for some function gk−1

(
r, s,

ds

dr
, . . . ,

dk−1s

drk−1

)
with

fk−1

(
r, s,

ds

dr

)
=

rxsu − rusx
(rx + ruu,1)k+1

, k ≥ 2.

This leads us to write

u,k =
dks

drk
= Fk−1

(
r, s,

ds

dr

)
+Gk−1

(
r, s,

ds

dr
, . . . ,

dk−1s

drk−1

)
,

where
Fk−1 =

1

fk−1
, Gk−1 = −gk−1

fk−1
, k ≥ 2.

Finally, the original ordinary differential equation may be written in the
normal form

dsn

drn
= F

(
r, s,

ds

dr
, . . . ,

dn−1s

drn−1

)
for some function F

(
r, s,

ds

dr
, . . . ,

dn−1s

drn−1

)
. Since (2.99) is invariant with

respect to the translation in s, the function F does not depend on s. This

allows us to introduce z =
ds

dr
and write (2.96) in the form (2.99) as an

(n− 1)–th order ordinary differential equation.

Remark 2.8.1. If
z = φ(r;C1, . . . , Cn−1)

(C1, . . . , Cn−1 arbitrary constants) is the general solution of the equation (2.99),
then the quadrature

s(x, u) =

∫ r(x,u)

φ(t;C1, . . . , Cn−1)dt+ Cn

gives the general solution of (2.96), where also Cn is an arbitrary constant.

Reduction of order through differential invariants
The equation

F (x, u, u,1, . . . , u,n) ≡ u,n − f(x, u, u,1, . . . , u,n−1) = 0

admits the Lie point symmetry corresponding to the infinitesimal generator
(2.98) if and only if

Ξ(n)(F )
∣∣∣
F=0

= 0.

Therefore, the function F has to depend on the group’s invariants

ω(x, u), ψ1(x, u, u,1), . . . , ψn(x, u, u,1, . . . , u,n),

where
Ξ(ω(x, u)) = 0, Ξ(k)(ψk(x, u, u,1, . . . , u,k)) = 0,

with
∂ψk
∂u,k

6= 0, k = 1, . . . , n.
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The group’s invariants are found by integrating the characteristic equations

dx

ξ(x, u)
=

du

η(x, u)
=

du,1

η(1)(x, u, u,1)
= . . . =

du,k

η(k)(x, u, u,1, . . . , u,k)
.

In order to find the group’s invariants we need to determine only ω(x, u)
and ψ1(x, u, u,1) by solving

dx

ξ(x, u)
=

du

η(x, u)
=

du,1
ηx + (ηu − ξx)u,1 − ξuu2

,1

.

In fact, since ω(x, u) and ψ1(x, u, u,1) are invariants under the action of the
n–th extended group, it follows that dψ1/dω is an invariant, and so are
d2ψ1/dω

2, . . . , dn−1ψ1/dω
n−1.

In terms of the differential invariants the n–th order ordinary differen-
tial equation has order (n− 1), i.e.,

dn−1ψ

dωn−1
= H

(
ω, ψ,

dψ

dω
, . . . ,

dn−2ψ

dωn−2

)
where we set ψ = ψ1, for some function H .

2.8.2 Invariant solutions of PDE’s

The function u = Θ(x), with components uA = ΘA(x) (A = 1, . . . ,m),
is said to be an invariant solution of

∆
(
x,u,u(1), . . . ,u(k)

)
= 0 (2.103)

if uA = ΘA(x) is an invariant surface of (2.34), and is a solution of (2.103),
i.e., a solution is invariant if and only if:

Ξ (uA −ΘA(x)) = 0 for uA = ΘA(x), A = 1, . . . ,m,

when ∆
(
x,u,u(1), . . . ,u(k)

)
= 0.

(2.104)

The equations (2.104)1, called invariant surface conditions, have the form

ξ1(x,u)
∂uA
∂x1

+ · · ·+ ξn(x,u)
∂uA
∂xn

= ηA(x,u), A = 1, . . . ,m, (2.105)

and are solved by introducing the corresponding characteristic equations:

dx1

ξ1(x,u)
= · · · = dxn

ξn(x,u)
=

du1

η1(x,u)
= · · · = dum

ηm(x,u)
. (2.106)

This allows to express the solution u = Θ(x) (that may be given in implicit
form if some of the infinitesimals ξi depend on u) as

uA = ψA(I1(x,u), . . . , In−1(x,u)), A = 1, . . . ,m, (2.107)

by substituting (2.107) into (2.104)2, a reduced system of differential equa-
tions involving (n − 1) independent variables (often called similarity vari-
ables) is obtained. The name similarity variables is due to the fact that the
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scaling invariance, i.e., the invariance under similarity transformations, was
one of the first examples where this procedure has been used systematically.

Note that I1, I2, . . . , In−1, u1, . . . , um are invariants of the given group,
and belong to the set of canonical coordinates. By considering also the vari-
able In, satisfying

Ξ(In) = 1, (2.108)

we have a complete set of canonical variables for the group characterized
by the generator Ξ; nevertheless, the determination of In is not required in
this context, because it does not appear explicitly in the reduced system.

If n = 2, i.e., the system has two independent variables, the reduced sys-
tem involves only one independent variable, whereupon it is an ordinary
differential system.

Since differential equations can admit more than one symmetry, there
are different ways to choose a set of similarity variables by starting from
different symmetries. It is also possible to achieve a multiple reduction of
variables by using multiple–parameter groups of transformations. When
this is possible, there are essentially two ways to obtain such a multiple
reduction of independent variables: repeating step by step the procedure
used in the case of one–parameter Lie groups for each subgroup considered,
or performing the reduction all–in–one.

Reducing step by step the number of variables means performing the
following:

1. take a generator of a symmetry (say, Ξ, written in terms of the vari-
ables involved in the system ∆ = 0) and build the associated reduc-
tion;

2. write the original system of differential equations ∆ = 0 in terms of
the invariants, thus obtaining the reduced system ∆̂ = 0;

3. if a further reduction is wanted, set ∆ = ∆̂, and go to step 1.

This method works only if each considered symmetry is admitted by
the system where the reduction is performed; of course, this is true for the
first symmetry considered, but for the subsequent steps this is true only if
the symmetry (written in terms of the invariants of previous symmetry) is
inherited by the reduced system. In the next example, we will show the
procedure to obtain a multiple reduction of variables for a second order
partial differential equation involving four independent variables.

Example 2.8.1. The linear wave equation

∂2u

∂t2
=
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

(interpreting t as the time and xi (i = 1, 2, 3) the spatial coordinates) admits,
among the others, the scaling invariance

Ξ1 = t
∂

∂t
+ x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
.

The integration of (2.105) leads to the similarity variables

y1 =
x1

t
, y2 =

x2

t
, y3 =

x3

t
.
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Taking u = u(y1, y2, y3), the wave equation becomes a differential equation involv-
ing three independent variables:

∂2u

∂yi∂yk
(δik − yiyk)− 2

∂u

∂yi
yi = 0.

Now, let us consider the Lie point symmetry

Ξ2 = x2
∂

∂x1
− x1

∂

∂x2
,

representing the rotation in the x1x2 plane. In terms of the new variables yi, it
reads

Ξ2 = Ξ2(y1)
∂

∂y1
+ Ξ2(y2)

∂

∂y2
= y2

∂

∂y1
− y1

∂

∂y2
,

which is a symmetry of the reduced wave equation. Its similarity variables are
s = y3 and v = y2

1 + y2
2 = (x2

1 + x2
2)/t2 so that solutions w = w(s, v) may exist

and are governed by the reduced equation

4v(1− v)
∂2w

∂v2
− 4vs

∂2w

∂v∂s
− (1− s2)

∂2w

∂s2
+ (4− 6v)

∂w

∂v
− 2s

∂w

∂s
= 0.

The infinitesimal operator

Ξ3 = t
∂

∂x3
+ x3

∂

∂t

in terms of variables v, s and w reads

Ξ3 = Ξ3(s)
∂

∂s
+ Ξ3(v)

∂

∂v
+ Ξ3(w)

∂

∂w
= (1− s2)

∂

∂s
− 2vs

∂

∂v
.

Its similarity variable is σ = v/(1−s2) = (x2
1+x2

2)/(t2−x2
3) and, in this variable,

the similarity solution w(σ) satisfies the equation

σ
∂2w

∂σ2
+
∂w

∂σ
= 0.

This ordinary differential equation admits the generator Ξ4 = ∂/∂w (but also the
symmetry σ∂/∂σ not inherited from the wave equation), so it can be integrated
yielding the particular solution

u = w = a1 + a2 log σ = a1 + a2 log
x2

1 + x2
2

t2 − x2
3

of the wave equation.

2.8.3 New solutions from a known solution

The consideration that, under the action of a Lie group of transforma-
tions admitted by a differential equation, a solution, which is not invariant
with respect to the group, is mapped into a family of solutions, suggests a
way of generating new solutions from a known solution. This is especially
interesting when one can obtain nontrivial solutions from trivial ones.
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Let us consider a one–parameter Lie group of transformations

x? = X(x,u; a), u? = U(x,u; a), (2.109)

admitted by a system of differential equations E , and let

u = Θ(x) (2.110)

be a solution of the given system E , which is not invariant with respect to
the group (2.109).

The transformation (2.109) maps a point (x,Θ(x)) of the solution
u = Θ(x) into the point (x?,u?) characterized by:

x? = X(x,Θ(x); a), u? = U(x,Θ(x); a). (2.111)

For a fixed value of the parameter a, one can eliminate x from (2.111) by
substituting the inverse transformation of (2.111)1,

x = X(x?,u?;−a), (2.112)

into (2.111)2 thus obtaining

u? = U(X(x?,u?;−a),Θ(X(x?,u?;−a)); a). (2.113)

Finally, by substituting (x?,u?;−a) with (x,u; a) in (2.113), one may state
the following theorem.

Theorem 2.8.2. If u = Θ(x) is not an invariant solution of a system E of differ-
ential equations, admitting the group (2.109), then

u = U(X(x,u; a),Θ(X(x,u; a));−a) (2.114)

implicitly defines a one–parameter family of solutions of the given system.

In the next example, a simple application of the previous procedure is
given.

Example 2.8.2. The linear heat equation (2.86) admits the group with the gener-
ator

Ξ = x2
1

∂

∂x1
+ x1x2

∂

∂x2
− x2

2 + 2x1

4
u
∂

∂u
.

By integrating the Lie equations, the related finite transformation is:

x?1 =
x1

1− ax1
, x?2 =

x2

1− ax1
,

u? = u
√

1− ax1 exp

(
− ax2

2

4(1− ax1)

)
.

One can obtain the inverse transformation by exchanging (x1, x2, u) and (x?1, x
?
2, u

?)
and replacing a by −a:

x1 =
x?1

1 + ax?1
, x2 =

x?2
1 + ax?1

,

u = u?
√

1 + ax?1 exp

(
ax?

2

2

4(1 + ax?1)

)
.
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By applying this transformation to the trivial solution u = A (A constant), the
nontrivial solution

u =
A√

1 + ax1
exp

(
− ax2

2

4(1 + ax1)

)
is immediately generated.

Besides reducing the order of an ordinary differential equation or find-
ing invariant solutions, the Lie symmetries of partial differential equations,
having a suitable algebraic structure, can be used to construct invertible
point transformations in order to map a source system of partial differen-
tial equations into equivalent forms [6, 8, 22, 66]; in this thesis, we will use
such an approach, and prove some theorems that extend some well known
results.
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3 First order systems of PDE’s

IN this Chapter, we briefly recall some introductory facts about first order
systems of partial differential equations with special emphasis on quasi-

linear ones. We review some results related to the Lie symmetries admitted
by such systems allowing for their transformation into autonomous and/or
homogeneous or linear form. All these procedures are constructive and the
new independent and dependent variables are obtained by introducing the
canonical variables of the admitted Lie symmetries. Some of these results
are extended in Chapter 5 of this thesis to introduce invertible point trans-
formations allowing one to map nonlinear systems of first order partial dif-
ferential equations which are polynomial in the derivatives to first order
systems being polynomially homogeneous in the derivatives.

3.1 General considerations on first order PDE’s

Many physical problems are often expressed mathematically by systems
of partial differential equations (PDE’s) in the form of balance laws [15, 20],

n∑
i=1

∂Fi(u)

∂xi
= B(u), (3.1)

where u ∈ Rm denotes the set of unknown fields, x ∈ Rn the set of in-
dependent variables, Fi(u) the components of a flux, and B(u) the pro-
duction term; when B(u) ≡ 0, we have a system of conservation laws.
In dynamical systems, the first component x1 of the independent variables
is the time, and the components of F1 are the densities of some physical
quantities. The presence of the source terms in systems in divergence form
implies additional mathematical difficulties in solving various problems.
For instance, from a numerical point of view, the presence of source terms
may require fractional step splitting methods where one alternates between
solving a homogeneous system of conservation laws and an ordinary dif-
ferential system obtained from the system of balance laws by dropping the
terms involving space derivatives. It is known [53] that for some type of
problems fractional step splitting methods perform quite poorly. Systems
like (3.1) fall in the more general class of nonhomogeneous quasilinear first
order systems of partial differential equations:

n∑
i=1

Ai(u)
∂u

∂xi
= B(u), (3.2)

where Ai (i = 1, . . . , n) are m ×m matrices with entries depending on the
field u.

Special problems of physical interest (see [2, 18, 19, 48, 65, 78, 81] for
some examples) may require to consider systems where the coefficients
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may depend also on the independent variables x, accounting for material
inhomogeneities, or particular geometric assumptions, or external actions,
so that in some applications one may need to consider nonautonomous
and/or nonhomogeneous quasilinear systems of the form

n∑
i=1

Ai(x,u)
∂u

∂xi
= B(x,u). (3.3)

In dealing with conservation laws (or, more in general, with autonom-
ous and homogeneous quasilinear first order systems of partial differential
equations), one has the invariance with respect to uniform stretching of the
independent variables, and this induces the existence of self–similar solu-
tions.

For instance, the system of conservation laws in (1 + 1)–dimensions

∂u

∂t
+
∂F(u)

∂x
= 0 (3.4)

(where we denote the independent variables with t and x) is invariant un-
der uniform stretching of coordinates: (x, t) 7→ (ax, at) (a ∈ R+); hence,
it admits self–similar solutions, defined on the space–time plane and con-
stant along straight–line rays emanating from the origin. Since (3.4) is also
invariant under translations of coordinates, (x, t) 7→ (x + x0, t + t0), the
focal point of self–similar solutions may be translated from the origin to
any fixed point (x, t) in space–time. If u is a self–similar solution of (3.4),
focused at the origin, it admits the representation

u(x, t) = U(ξ), ξ =
x

t
, −∞ < x <∞, t > 0, (3.5)

where U(ξ) satisfies the system of ordinary differential equations

[F(U(ξ))− ξU(ξ)]′ + U(ξ) = 0, (3.6)

and the prime denotes differentiation with respect to ξ.
Simple instances of first order quasilinear systems are 2 × 2 homoge-

neous and autonomous systems, widely used to model one–dimensional
nonlinear wave processes through non–dissipative and homogeneous me-
dia:

A0 (u)
∂u

∂t
+A1 (u)

∂u

∂x
= 0, u =

[
u1

u2

]
, (3.7)

where A0 and A1 are 2× 2 matrices.
The investigation of systems of the form (3.7) which are hyperbolic in

the t–direction may involve the consideration of Riemann invariants [21,
51], as well as the use of the hodograph transformation; remarkably, in the
conservative case, the Riemann problem, i.e., the solution with piecewise
constant initial data having a single discontinuity (see [20, 86] for details),
may be solved.

On the contrary, in dealing with nonhomogeneous and/or dissipative
media, we often have to deal with 2× 2 quasilinear systems like

A0 (t, x,u)
∂u

∂t
+A1 (t, x,u)

∂u

∂x
= B (t, x,u) , (3.8)
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where B (t, x,u) is a known column vector.
Different physical contexts involve models of the class (3.8): viscoelastic

materials [18], nonlinear elastic rods with variable cross–section [48], non-
linear heat conduction problems [81], flows in fluid filled elastic tubes [2,
78], problems with cylindrical or spherical symmetry.

Due to the nonhomogeneous and/or nonautonomous form, one loses
the possibility to have in general the hodograph transformation, the Rie-
mann invariants, the invariance with respect to homogeneous scaling of
independent variables (no centered waves!), the latter implying that the
Riemann problem can not be solved analytically.

Various special techniques are known to map some nonhomogeneous
2 × 2 systems to homogeneous form, involving Bäcklund transformations
[82], hodograph–like transformations [92], transformations via a solution
[83].

3.2 Transformations of differential equations

Lie point symmetries of differential equations can be used to construct
a mapping from a given (source) system of differential equations to another
(target) suitable system of differential equations that turns out to be equiv-
alent [6, 19, 22, 23, 25, 26, 39, 65, 66, 80]. Such a mapping (if it exists) needs
not be a group transformation; moreover, any infinitesimal generator ad-
mitted by the source system of differential equations has to be mapped
to an infinitesimal generator admitted by the target system of differential
equations [8].

If the mapping is one–to–one (invertible) then the mapping must estab-
lish a one–to–one correspondence between infinitesimal generators of the
source and target system of differential equations. In other words, the Lie
algebra of infinitesimal operators of the target system of differential equa-
tions has to be isomorphic to the Lie algebra of infinitesimal operators of
the source system of differential equations. On the contrary, if the mapping
from the source system to the target one is allowed to be non–invertible,
then it is not necessary that a one–to–one correspondence between Lie al-
gebras of infinitesimal operators of source and target systems of differential
equations exists.

But such a non–invertible mapping must take any infinitesimal operator
admitted by the source system into an infinitesimal operator (which could
be a null operator) admitted by the target one. More precisely, the mapping
must establish a homomorphism between any Lie algebra of infinitesimal
operators of the source system and a Lie algebra of infinitesimal operators
of the target system.

In this context, the algebraic structure of the admitted Lie symmetries is
crucial. Here, we present some well known results related to the transfor-
mation of a system of differential equations in autonomous form, the trans-
formation of a nonlinear first order system of partial differential equations
to linear form, and the transformation of quasilinear first order systems of
partial differential equations to homogeneous and autonomous form. From
all the results that are recalled below, the fundamental role of the canonical
variables for the admitted Lie symmetries clearly emerges. Similar tech-
niques will be used in Chapter 5 for proving a couple of new theorems
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concerned with the transformation of general first order nonlinear partial
differential equations.

3.2.1 Reduction to autonomous form

Let us consider the case of transformation to autonomous form, i.e., a
form in which the independent variables do not appear explicitly. In [22,
26] necessary and sufficient conditions for reducing a system of partial dif-
ferential equations to autonomous form have been given. The problem re-
quires to map a general system of differential equations of order k

∆
(
x,u,u(1), . . . ,u(k)

)
= 0, (3.9)

into an equivalent autonomous system, say

∆̃
(
w,w(1), . . . ,w(k)

)
= 0, (3.10)

where w ≡ (w1, . . . , wm) denote the new dependent variables. This reduc-
tion, when it is possible, is performed by an invertible point transformation
like

z = Z(x,u), w = W(x,u), (3.11)

whose construction is algorithmically suggested by the Lie symmetries ad-
mitted by (3.9).

Every autonomous system of differential equations of the form (3.10) is
invariant with respect to the n translations of the independent variables,
i.e., it admits the Lie point symmetries generated by the following vector
fields

Ξi =
∂

∂zi
, i = 1, . . . , n, (3.12)

spanning an n–dimensional Abelian Lie algebra. Since the Lie bracket of
two infinitesimal generators of symmetries is not affected by an invertible
change of coordinates, it follows that if a general system of the form (3.9)
can be mapped by (3.11) to the autonomous form (3.10), it has to admit,
as subalgebra of the Lie algebra of its point symmetries, an n–dimensional
Lie algebra with a suitable algebraic structure. These conditions are also
sufficient as stated by the next theorem.

Theorem 3.2.1. [22] The system of differential equations of order k

∆
(
x,u,u(1), . . . ,u(k)

)
= 0, (3.13)

where x ∈ Rn and u ∈ Rm, can be transformed by an invertible point transforma-
tion, say

z = Z(x,u), w = W(x,u), (3.14)

to the autonomous equivalent form

∆̃
(
w,w(1), . . . ,w(k)

)
= 0, (3.15)

if and only if it is left invariant by n Lie groups of point transformations whose
infinitesimal operators Ξi (i = 1, . . . , n) give a distribution of rank n, and satisfy
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the conditions:
[Ξi,Ξj ] = 0, i, j = 1, . . . , n, (3.16)

that is, the operators Ξi span an n–dimensional Abelian Lie algebra.

This theorem provides useful, for instance, when one is facing nonlin-
ear propagation of discontinuity waves [11] in states which are not constant,
when special geometrical assumptions (spherical or cylindrical symmetry)
are intrinsic to the studied problem (for instance, in the case of Navier–
Stokes–Fourier equations for a gas in rotation about a fixed axis with a con-
stant angular velocity). Applications can be found, for instance, in [25, 70,
71, 85].

3.2.2 Reduction to linear form

Lie symmetries spanning an infinite–dimensional Lie algebra are essen-
tial to transform nonlinear first order partial differential equations to linear
form. Here, we restrict ourselves to the case in which:

• both the source and target system of partial differential equations are
first order systems;

• the mapping is a one–to–one transformation;

• the target system of partial differential equations is linear.

Necessary and sufficient conditions for the existence of invertible mappings
linking a nonlinear system of first order partial differential equations with
a linear system of differential equations have been given by Kumei and
Bluman [39] (see also [8]). However, the proof they give does not seem
to involve “natural” conditions. A more “natural” proof has been given
in [23], and it involves the introduction of the canonical variables related
to some infinitesimal operators whose linear combination (with multipliers
given by arbitrary functions that are solution of a linear system of partial
differential equations) is an admitted group of the source system. The next
theorem provides necessary and sufficient conditions for the transforma-
tion to the linear form.

Theorem 3.2.2 ([23]). The nonlinear first order system of partial differential equa-
tions

∆
(
x,u,u(1)

)
= 0, (3.17)

where x ∈ Rn, u ∈ Rm, can be transformed to the linear form

L(z)[w] = B(z), (3.18)

where L(z) is a linear first order differential operator, by means of the invertible
point transformation

z = Z(x,u), w = W(x,u), (3.19)

if and only if it is left invariant by a Lie group of point transformations whose
infinitesimal operator has the form

Ξ =

m∑
A=1

FA(z)ΞA, (3.20)
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where

ΞA =
n∑

α=1

ξαA(x,u)
∂

∂xα
+

m∑
C=1

ηCA(x,u)
∂

∂uC
, (3.21)

with ξαA(x,u), ηCA(x,u) being specific functions of their arguments, and the func-
tions FA(z) satisfying the linear system

L(z)[FA] = 0 (3.22)

along with the conditions

ΞA(z) = 0, [ΞA,ΞB] = 0, A,B = 1, . . . ,m. (3.23)

Applications of the Theorem 3.2.2 can be found in [29, 39, 67].

3.2.3 Reduction of quasilinear systems to autonomous and homo-
geneous form

Another important application of Lie symmetries concerns the reduc-
tion of a general quasilinear first order system of partial differential equa-
tions to a quasilinear one that is also autonomous and homogeneous. By
considering the 2× 2 quasilinear systems of the form

A0 (t, x,u)
∂u

∂t
+A1 (t, x,u)

∂u

∂x
= B (t, x,u) , (3.24)

in [19], it has been proved a theorem giving necessary and sufficient con-
ditions in order to map a system of the form (3.24), under the action of the
one–to–one point variable transformation like

τ = T (t, x) , ξ = X (t, x) , v = V (t, x,u) , (3.25)

to the autonomous and homogeneous form

Â0 (v)
∂v

∂τ
+ Â1 (v)

∂v

∂ξ
= 0, v = [v1, v2]T . (3.26)

The possibility of reducing (3.24) to autonomous and homogeneous form
(3.26) is strictly related to the symmetry properties of the model under in-
vestigation. In fact, necessary and sufficient conditions allowing for such a
reduction are obtained; remarkably, when the approach here considered is
applicable, it is possible to construct explicitly the map transforming non-
homogeneous and nonautonomous 2 × 2 quasilinear systems to homoge-
neous and autonomous form. The key idea is that any 2 × 2 homoge-
neous and autonomous first order quasilinear system is left invariant by
an infinite–parameter Lie group of point transformations [8]. Therefore,
if a nonhomogeneous and nonautonomous system can be reduced to ho-
mogeneous and autonomous form by an invertible point transformation,
an infinite–parameter Lie group has to be admitted by the original system;
conversely, if a nonhomogeneous and nonautonomous 2 × 2 quasilinear
system admits a suitable infinite–parameter Lie group of point symme-
tries, then an invertible map exists transforming it to homogeneous and
autonomous form [19]. The following theorem holds.
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Theorem 3.2.3 ([19]). The nonhomogeneous and nonautonomous 2× 2 quasilin-
ear system

A0 (t, x,u)
∂u

∂t
+A1 (t, x,u)

∂u

∂x
= B (t, x,u) (3.27)

transforms, under the action of the one–to–one point variable transformation

τ = T (t, x) , ξ = X (t, x) , v = V (t, x,u) , (3.28)

to the homogeneous and autonomous form, say

Â0 (v)
∂v

∂τ
+ Â1 (v)

∂v

∂ξ
= 0, v = [v1, v2]T , (3.29)

if and only if the system (3.27) is left invariant by the Lie group of point symmetries

Ξ = F1 (v) Ξ1 + F2 (v) Ξ2, (3.30)

where
Ξi = τi

∂

∂t
+ ξi

∂

∂x
+ η

(1)
i

∂

∂u1
+ η

(2)
i

∂

∂u2
, i = 1, 2

are commuting infinitesimal operators, i.e., [Ξ1,Ξ2] = 0, the infinitesimal genera-
tors τi, ξi, η

(1)
i and η(2)

i may depend on t, x, u1 and u2, whereas F1(v) and F2(v)
are solutions of the linear system of partial differential equations

Â1 (v) J ∇vF1(v)− Â0 (v) J ∇vF2(v) = 0, J =

[
0 1
−1 0

]
, (3.31)

where ∇v is the gradient operator with respect to the components of the indicated
subscript, and it is

Ξ1T = 1, Ξ1X = 0, Ξ2T = 0, Ξ2X = 1, Ξ1v = Ξ2v = 0. (3.32)

It is worth of underlining that if the reduction of 2 × 2 quasilinear first
order systems of partial differential equations to homogeneous and au-
tonomous form is intimately related to the possibility of their transforma-
tion to linear form, on the contrary, for general first order quasilinear sys-
tems involving more than two independent variables and/or more than
two dependent variables, this link can not be invoked. Nevertheless, also
in this case it is possible to recover the necessary and sufficient conditions
allowing for the transformation to homogeneous and autonomous form
within the framework of Lie groups analysis of differential equations.

In particular, in [65], it has been proved a theorem providing the neces-
sary and sufficient conditions in order to map a general first order quasilin-
ear system of partial differential equations, say

n∑
i=1

Ai(x,u)
∂u

∂xi
= B(x,u), (3.33)

where x ∈ Rn, u ∈ Rm, Ai are m × m matrices with entries depending
at most on x and u, and the source term B ∈ Rm depends at most on x
and u too, into a first order quasilinear homogeneous and autonomous sys-
tem. This reduction, when it is possible, is performed by an invertible point
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transformation like

z = Z(x), w = W(x,u), (3.34)

which preserves the quasilinear structure of the system, and whose con-
struction is algorithmically suggested by the Lie point symmetries admit-
ted by (3.33). We need that the new independent variables depend at most
on the old independent variables to be sure that the quasilinear structure
is preserved. In fact, if the new independent variables z are allowed to de-
pend also on the old dependent variables u, then in general it may occur
that the target system is not in quasilinear form.

Every first order quasilinear homogeneous and autonomous system is
invariant with respect to the independent translations and to a uniform
scaling of all the n independent variables, i.e., it admits (whatever is the
functional form of the entries of matrices Ai) the Lie point symmetries gen-
erated by the following vector fields

Ξi =
∂

∂zi
, i = 1, . . . , n,

Ξn+1 =

n∑
i=1

zi
∂

∂zi
,

(3.35)

spanning an (n+ 1)–dimensional solvable Lie algebra where the only non–
zero commutators are

[Ξi,Ξn+1] = Ξi, i = 1, . . . , n. (3.36)

Since the Lie bracket of two infinitesimal generators of symmetries is not
affected by an invertible change of coordinates, it follows that if a system
of the form (3.33) can be mapped by (3.34) to the autonomous and homo-
geneous form, it has to admit, as subalgebra of the Lie algebra of its point
symmetries, an (n + 1)–dimensional Lie algebra with a suitable algebraic
structure.

All these considerations can be summarized in the following theorem.

Theorem 3.2.4 ([65]). A nonhomogeneous and/or nonautonomous first order
quasilinear system of the form

n∑
i=1

Ai(x,u)
∂u

∂xi
= B(x,u), (3.37)

can be transformed by the invertible map like

z = Z(x), w = W(x,u), (3.38)

into an autonomous and homogeneous first order quasilinear system, say

n∑
i=1

Âi(w)
∂w

∂zi
= 0, (3.39)
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if and only if it admits as subalgebra of the algebra of its Lie point symmetries an
(n+ 1)–dimensional Lie algebra spanned by the vector fields

Ξi =

n∑
j=1

ξji (x)
∂

∂xj
+

m∑
A=1

ηAi (x,u)
∂

∂uA
, i = 1, . . . , n,

Ξn+1 =
n∑
j=1

ξjn+1(x)
∂

∂xj
+

m∑
A=1

ηAn+1(x,u)
∂

∂uA
,

(3.40)

such that

[Ξi,Ξj ] = 0, [Ξi,Ξn+1] = Ξi, i, j = 1, . . . , n. (3.41)

Furthermore, it has to be verified that all minors of order n extracted from the
(n + 1) × n matrix with entries ξiα (α = 1, . . . , n + 1; i = 1, . . . , n) are non–
vanishing, and the new dependent variables w, which by construction are invari-
ants of Ξ1, . . . ,Ξn, are invariants of Ξn+1 too.

Of course, the Theorem 3.2.4 proved in [65] generalizes the Theorem
3.2.3 established in [19] for 2× 2 quasilinear first order systems. Both theo-
rems may be applied when we consider a given system of quasilinear par-
tial differential equations and the required hypotheses are fulfilled. The
new independent and dependent variables can be found by solving the
overdetermined system of first order partial differential equations:

Ξizj = δij , ΞiwA = 0, i, j = 1, . . . , n, A = 1, . . . ,m, (3.42)

for the unknowns z(x) and w(x,u); because the operators Ξi (i = 1, . . . , n)
are commuting, this overdetermined system always admits a solution.

Application of Theorem 3.2.4 requires the following steps:

1. determine the Lie algebra L of point symmetries of system (3.37) (var-
ious computer algebra packages are available [3, 38, 42, 43, 44, 68]);

2. if dim(L) ≥ n+ 1:

• determine the (n + 1)–dimensional Lie subalgebras (an optimal
system [62, 73, 76] suffices);
• check if among the Lie subalgebras there is a Lie algebra having

the required structure;
• find the canonical variables of the symmetries, and reduce the

system to homogeneous and autonomous form.

The reduction of a nonhomogeneous quasilinear system to homoge-
neous form, besides its intrinsic interest, may reveal useful in investigating
a well known problem connected with a system of hyperbolic conserva-
tion laws, say the Riemann problem [20, 86], where one takes a piecewise
constant initial datum with a single discontinuity. As well known, there is
an existence and uniqueness theorem for the Riemann problem for a sys-
tem of conservation laws; on the contrary, analogous results have not been
obtained yet for a system of balance laws, even for a generalized (i.e., piece-
wise non–constant initial data) Riemann problem [4].

In the case in which we have a system of balance laws and the appli-
cation of Theorem 3.2.4 leads to a system of conservation laws, then one
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may investigate a Riemann problem (classical or generalized) for the orig-
inal system of balance laws by studying an associated Riemann problem
(which can be classical or generalized) for a system of conservation laws
[65]. Once the latter problem has been solved, thanks to the inverse trans-
formation, it is possible to obtain the corresponding solution of the original
system.
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4 Equivalence transformations

IN this Chapter, a class of partial differential equations (a conservation law
and four balance laws), with four independent variables, and involving

sixteen arbitrary continuously differentiable functions, is considered in the
framework of equivalence transformations. These are point transforma-
tions of differential equations involving arbitrary elements, defined in an
augmented space of independent, dependent and additional variables rep-
resenting values taken by the arbitrary elements. Projecting the admitted
symmetries into the space of independent and dependent variables, we de-
termine some finite transformations mapping the system of balance laws to
an equivalent one with the same differential structure but involving differ-
ent arbitrary elements; in particular, the target system we want to recover is
an autonomous system of conservation laws. An example of physical inter-
est (3D Euler equations for an ideal gas in a non–inertial frame and subject
to gravity) is also considered.

The results here presented are contained in [35].

4.1 A brief sketch of equivalence transformations

In Chapter 3, it has been shown that the transformation of a general
nonautonomous and/or nonhomogeneous first order quasilinear system
of partial differential equations (which every system of first order balance
laws reduces to) into autonomous and homogeneous quasilinear form is
possible if and only if a suitable algebra of point symmetries is admitted.
This procedure works well for a given system of partial differential equa-
tions.

Nevertheless, if one is interested to identify the systems of balance laws
(possibly nonautonomous) that can be transformed by an invertible point
transformation to an autonomous system of conservation laws, a conve-
nient approach consists in using equivalence transformations [46, 47, 56,
61, 76, 77, 88, 89].

To fix the notation, we briefly recall the main elements of equivalence
transformations of differential equations.

In many applications, we have differential equations involving arbitrary
elements (constants or functions), so that one has a class of differential equa-
tions. Here, we limit ourselves to consider a class E(p) of first order partial
differential equations involving some arbitrary continuously differentiable
functions pk(x,u) (k = 1, . . . , `),

∆
(
x,u,u(1); p,p(1)

)
= 0, (4.1)

whose elements are given once we fix the functions pk (p(1) denotes the set
of first order partial derivatives of the p’s with respect to their arguments).
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To study the invariance of a class of differential equations, it is con-
venient to consider equivalence transformations, i.e., transformations that
preserve the differential structure of the equations in the class but may
change the form of the constitutive functions and/or parameters [46, 47,
56, 69, 72, 76, 77, 88, 89].

Definition 4.1.1 (Equivalence transformations [76]). A one–parameter Lie
group of equivalence transformations of a family E(p) of PDE’s is a one–parameter
Lie group of transformations given by

X = X(x,u,p; a), U = U(x,u,p; a), P = P(x,u,p; a), (4.2)

a being the parameter, which is locally aC∞ diffeomorphism and maps a class E(p)
of differential equations into itself; thus, it may change the differential equations
(the form of the arbitrary elements therein involved) but preserves their differential
structure.

In the following, we shall assume that the transformations of the inde-
pendent and dependent variables do not involve the arbitrary elements p.

In an augmented space A ≡ Rn × Rm × R` [56, 76], where the inde-
pendent variables, the dependent variables and the arbitrary functions are
defined, the generator of the equivalence transformation,

Ξ =
n∑
i=1

ξi(x,u)
∂

∂xi
+

m∑
A=1

ηA(x,u)
∂

∂uA
+
∑̀
k=1

µk(x,u,p)
∂

∂pk
, (4.3)

involves also the infinitesimals µk(x,u,p) accounting for the arbitrary func-
tions pk. The search for continuous equivalence transformations can be ex-
ploited by using the Lie infinitesimal criterion [76].

The first prolongation of Ξ writes as

Ξ(1) = Ξ +
m∑
A=1

n∑
i=1

ηA[i]
∂

∂uA,i
+
∑̀
k=1

n+m∑
α=1

µk[α]

∂

∂pk,α
, (4.4)

with

ηA[i] =
DηA

Dxi
−

n∑
j=1

uA,j
Dξj

Dxi
, µk[α] =

D̃µk

D̃zα
−
n+m∑
β=1

pk,β
D̃ζβ

D̃zα
, (4.5)

(uA,j =
∂uA
∂xj

, pk,α =
∂pk
∂zα

, z = (x,u), ζ = (ξ,η)), where the Lie derivatives
are

D

Dxi
=

∂

∂xi
+

m∑
A=1

uA,i
∂

∂uA
,

D̃

D̃zα
=

∂

∂zα
+
∑̀
k=1

pk,α
∂

∂pk
. (4.6)

In the augmented space A, the arbitrary functions determining the class
of differential equations are assumed as dependent variables, and we re-
quire the invariance of the class in this augmented space. If we project the
symmetries on the space Z ≡ Rn × Rm of the independent and depen-
dent variables (this is possible because the infinitesimals of independent
and dependent variables are assumed to be independent of p), we obtain
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a transformation changing an element of the class of differential equations
to another element in the same class (same differential structure but in gen-
eral different arbitrary elements). Such projected transformations map so-
lutions of a system in the class to solutions of a transformed system in the
same class.

Thus, in the augmented space A, given the equivalence generator (4.3)
the integration of Lie’s equations

dX

da
= ξ(X,U), X(0) = x,

dU

da
= η(X,U), U(0) = u,

dP

da
= µ(X,U,P), P(0) = p,

(4.7)

provides the finite transformation which maps the class into itself. On the
contrary, the integration of the Lie’s equations (4.7) in the projected space
Z gives an equivalence transformation mapping a system in the class into
another system in the same class.

4.2 The model and the admitted equivalence transfor-
mations

In this Section, we consider a (3 + 1)–dimensional system of first order
partial differential equations consisting of a linear conservation law and
four general balance laws involving some arbitrary functions. The aim is to
identify classes of systems that can be mapped through an invertible point
transformation to a system of autonomous conservation laws. A similar
approach has been used recently in [69] for a 2 × 2 first order quasilinear
system of partial differential equations, and in [72] for a system of three
balance laws in three independent variables.

More in detail, the considered class of differential equations, with four
independent and five dependent variables, involves sixteen arbitrary func-
tions of the independent and dependent variables. The equivalence trans-
formations are determined, and the finite transformations corresponding to
the admitted generators are constructed. As a consequence, the equivalent
conservation laws are characterized.
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Consider the class E(p) with p = (p1, . . . , p16) of systems

∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
+
∂u4

∂x4
= 0,

∂u2

∂x1
+
∂p1

∂x2
+
∂p2

∂x3
+
∂p3

∂x4
= p13,

∂u3

∂x1
+
∂p4

∂x2
+
∂p5

∂x3
+
∂p6

∂x4
= p14,

∂u4

∂x1
+
∂p7

∂x2
+
∂p8

∂x3
+
∂p9

∂x4
= p15,

∂u5

∂x1
+
∂p10

∂x2
+
∂p11

∂x3
+
∂p12

∂x4
= p16,

(4.8)

x ≡ (x1, x2, x3, x4) being the independent variables, u ≡ (u1, u2, u3, u4, u5)
the dependent variables, whereas p ≡ (p1, . . . , p16) stand for arbitrary con-
tinuously differentiable functions of x and u. For instance, three–dimen-
sional Euler equations of ideal gas–dynamics fall into the class (4.8).

By requiring the invariance of the class E(p) in the augmented space
A ≡ R4 × R5 × R16, through the Lie’s infinitesimal criterion [76], we deter-
mine 24 infinitesimal operators:

Ξe1 = f (1)∂x2 − ∂x2f (1)u1∂u1 +
(
∂x1f

(1)u1 + ∂x3f
(1)u3 + ∂x4f

(1)u4

)
∂u2

− ∂x2f (1) (u3∂u3 + u4∂u4)

+
(

2∂x1f
(1)u2 + ∂x2f

(1)p1 + ∂x3f
(1)(p2 + p4) + ∂x4f

(1)(p3 + p7)
)
∂p1

+
(
∂x1f

(1)u3 + ∂x3f
(1)p5 + ∂x4f

(1)p8

)
∂p2

+
(
∂x1f

(1)u4 + ∂x3f
(1)p6 + ∂x4f

(1)p9

)
∂p3

+
(
∂x1f

(1)u3 + ∂x3f
(1)p5 + ∂x4f

(1)p6

)
∂p4

− ∂x2f (1) (p5∂p5 + p6∂p6)

+
(
∂x1f

(1)u4 + ∂x3f
(1)p8 + ∂x4f

(1)p9

)
∂p7

− ∂x2f (1) (p8∂p8 + p9∂p9)

+
(
∂x1f

(1)u5 + ∂x2f
(1)p10 + ∂x3f

(1)p11 + ∂x4f
(1)p12

)
∂p10

+
(
∂2
x1x1f

(1)u1 + 2∂2
x1x2f

(1)u2 + 2∂2
x1x3f

(1)u3 + 2∂2
x1x4f

(1)u4

+ ∂2
x2x2f

(1)p1 + ∂2
x2x3f

(1)(p2 + p4) + ∂2
x2x4f

(1)(p3 + p7) + ∂2
x3x3f

(1)p5

+ ∂2
x3x4f

(1)(p6 + p8) + ∂2
x4x4f

(1)p9 + ∂x3f
(1)p14 + ∂x4f

(1)p15

)
∂p13

− ∂x2f (1) (p14∂p14 + p15∂p15)

+
(
∂2
x1x2f

(1)u5 + ∂2
x2x2f

(1)p10 + ∂2
x2x3f

(1)p11 + ∂2
x2x4f

(1)p12

)
∂p16 ,
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Ξe2 = f (2)∂x3 − ∂x3f (2) (u1∂u1 + u2∂u2)

+
(
∂x1f

(2)u1 + ∂x2f
(2)u2 + ∂x4f

(2)u4

)
∂u3

− ∂x3f (2) (u4∂u4 + p1∂p1)

+
(
∂x1f

(2)u2 + ∂x2f
(2)p1 + ∂x4f

(2)p3

)
∂p2 − ∂x3f (2)p3∂p3

+
(
∂x1f

(2)u2 + ∂x2f
(2)p1 + ∂x4f

(2)p7

)
∂p4

+
(

2∂x1f
(2)u3 + ∂x2f

(2)(p2 + p4) + ∂x3f
(2)p5 + ∂x4f

(2)(p6 + p8)
)
∂p5

+
(
∂x1f

(2)u4 + ∂x2f
(2)p3 + ∂x4f

(2)p9

)
∂p6 − ∂x3f (2)p7∂p7

+
(
∂x1f

(2)u4 + ∂x2f
(2)p7 + ∂x4f

(2)p9

)
∂p8 − ∂x3f (2)p9∂p9

+
(
∂x1f

(2)u5 + ∂x2f
(2)p10 + ∂x3f

(2)p11 + ∂x4f
(2)p12

)
∂p11

− ∂x3f (2)p13∂p13

+
(
∂2
x1x1f

(2)u1 + 2∂2
x1x2f

(2)u2 + 2∂2
x1x3f

(2)u3 + 2∂2
x1x4f

(2)u4

+ ∂2
x2x2f

(2)p1 + ∂2
x2x3f

(2)(p2 + p4) + ∂2
x2x4f

(2)(p3 + p7) + ∂2
x3x3f

(2)p5

+ ∂2
x3x4f

(2)(p6 + p8) + ∂2
x4x4f

(2)p9 + ∂x2f
(2)p13 + ∂x4f

(2)p15

)
∂p14

− ∂x3f (2)p15∂p15

+
(
∂2
x1x3f

(2)u5 + ∂2
x2x3f

(2)p10 + ∂2
x3x3f

(2)p11 + ∂2
x3x4f

(2)p12

)
∂p16 ,

Ξe3 = f (3)∂x4 − ∂x4f (3) (u1∂u1 + u2∂u2 + u3∂u3)

+
(
∂x1f

(3)u1 + ∂x2f
(3)u2 + ∂x3f

(3)u3

)
∂u4

− ∂x4f (3) (p1∂p1 + p2∂p2)

+
(
∂x1f

(3)u2 + ∂x2f
(3)p1 + ∂x3f

(3)p2

)
∂p3

− ∂x4f (3) (p4∂p4 + p5∂p5)

+
(
∂x1f

(3)u3 + ∂x2f
(3)p4 + ∂x3f

(3)p5

)
∂p6

+
(
∂x1f

(3)u2 + ∂x2f
(3)p1 + ∂x3f

(3)p4

)
∂p7

+
(
∂x1f

(3)u3 + ∂x2f
(3)p2 + ∂x3f

(3)p5

)
∂p8

+
(

2∂x1f
(3)u4 + ∂x2f

(3)(p3 + p7) + ∂x3f
(3)(p6 + p8) + ∂x4f

(3)p9

)
∂p9

+
(
∂x1f

(3)u5 + ∂x2f
(3)p10 + ∂x3f

(3)p11 + ∂x4f
(3)p12

)
∂p12

− ∂x4f (3) (p13∂p13 + p14∂p14)

+
(
∂2
x1x1f

(3)u1 + 2∂2
x1x2f

(3)u2 + 2∂2
x1x3f

(3)u3 + 2∂2
x1x4f

(3)u4

+ ∂2
x2x2f

(3)p1 + ∂2
x2x3f

(3)(p2 + p4) + ∂2
x2x4f

(3)(p3 + p7) + ∂2
x3x3f

(3)p5

+ ∂2
x3x4f

(3)(p6 + p8) + ∂2
x4x4f

(3)p9 + ∂x2f
(3)p13 + ∂x3f

(3)p14

)
∂p15

+
(
∂2
x1x4f

(3)u5 + ∂2
x2x4f

(3)p10 + ∂2
x3x4f

(3)p11 + ∂2
x4x4f

(3)p12

)
∂p16 ,
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Ξe4 = f (4)u1∂u5 + f (4)u2∂p10 + f (4)u3∂p11 + f (4)u4∂p12

+
(
∂x1f

(4)u1 + ∂x2f
(4)u2 + ∂x3f

(4)u3 + ∂x4f
(4)u4

)
∂p16 ,

Ξe5 = f (5)u2∂u5 + f (5)p1∂p10 + f (5)p2∂p11 + f (5)p3∂p12

+
(
∂x1f

(5)u2 + ∂x2f
(5)p1 + ∂x3f

(5)p2 + ∂x4f
(5)p3 + f (5)p13

)
∂p16 ,

Ξe6 = f (6)u3∂u5 + f (6)p4∂p10 + f (6)p5∂p11 + f (6)p6∂p12

+
(
∂x1f

(6)u3 + ∂x2f
(6)p4 + ∂x3f

(6)p5 + ∂x4f
(6)p6 + f (6)p14

)
∂p16 ,

Ξe7 = f (7)u4∂u5 + f (7)p7∂p10 + f (7)p8∂p11 + f (7)p9∂p12

+
(
∂x1f

(7)u4 + ∂x2f
(7)p7 + ∂x3f

(7)p8 + ∂x4f
(7)p9 + f (7)p15

)
∂p16 ,

Ξe8 = f (8)u5∂u5 + f (8)p10∂p10 + f (8)p11∂p11 + f (8)p12∂p12

+
(
∂x1f

(8)u5 + ∂x2f
(8)p10 + ∂x3f

(8)p11 + ∂x4f
(8)p12 + f (8)p16

)
∂p16 ,

Ξe9 = f (9)∂u5 + ∂x1f
(9)∂p16 , Ξe10 = f (10)∂p1 + ∂x2f

(10)∂p13 ,

Ξe11 = f (11)∂p2 + ∂x3f
(11)∂p13 , Ξe12 = f (12)∂p3 + ∂x4f

(12)∂p13 ,

Ξe13 = f (13)∂p4 + ∂x2f
(13)∂p14 , Ξe14 = f (14)∂p5 + ∂x3f

(14)∂p14 ,

Ξe15 = f (15)∂p6 + ∂x4f
(15)∂p14 , Ξe16 = f (16)∂p7 + ∂x2f

(16)∂p15 ,

Ξe17 = f (17)∂p8 + ∂x3f
(17)∂p15 , Ξe18 = f (18)∂p9 + ∂x4f

(18)∂p15 ,

Ξe19 = f (19)∂p10 + ∂x2f
(19)∂p16 , Ξe20 = f (20)∂p11 + ∂x3f

(20)∂p16 ,

Ξe21 = f (21)∂p12 + ∂x4f
(21)∂p16 ,

Ξe22 = f (22)∂u1 + f (23)∂u2 + f (24)∂u3 + f (25)∂u4 + ∂x1f
(23)∂p13

+ ∂x1f
(24)∂p14 + ∂x1f

(25)∂p15 ,

Ξe23 = f(x1)∂x1 − f ′(x1)

(
4∑

k=2

uk∂uk + 2
9∑

k=1

pk∂pk +
12∑

k=10

pk∂pk

)
−
(
f ′′(x1)u2 + 2f ′(x1)p13

)
∂p13 −

(
f ′′(x1)u3 + 2f ′(x1)p14

)
∂p14

−
(
f ′′(x1)u4 + 2f ′(x1)p15

)
∂p15 − f ′(x1)p16∂p16 ,

Ξe24 =
4∑

k=1

uk∂uk +
9∑

k=1

pk∂pk +
15∑

k=13

pk∂pk ,

where f (i) ≡ f (i)(x) (i = 1, . . . , 25) are arbitrary functions depending on x,
with f (22), f (23), f (24) and f (25) subjected to the constraint

4∑
k=1

∂xkf21+k(x) = 0, (4.9)

and f(x1) is an arbitrary function of its argument; the prime denotes the
derivative with respect to the argument.
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In view of the results we want to achieve, we need to consider the non–
vanishing projections of the admitted operators on the space Z ≡ R4 × R5:

Ξ1 = f1(x1)∂x1 − f ′1(x1)(u2∂u2 + u3∂u3 + u4∂u4),

Ξi = fi(x)∂xi +
4∑

k=1

(uk∂xkfi(x)∂ui − uk∂xifi(x)∂uk) , i = 2, . . . , 4,

Ξ4+i = uif4+i(x)∂u5 , i = 1, . . . , 5,

Ξ10 = f10(x)∂u5 , Ξ11 =
4∑

k=1

f10+k(x)∂uk , Ξ12 =
4∑

k=1

uk∂uk ,

(4.10)

where we suitably relabelled the functions occurring in the equivalence op-
erators; moreover, the functions fi (i = 11, . . . , 14) satisfy the condition

4∑
k=1

∂xkf10+k(x) = 0. (4.11)

By considering the corresponding Lie’s equations, we are able to compute
the finite corresponding transformations, say

X = X(x,u; a), U = U(x,u; a), (4.12)

allowing us to map the original system (4.8) to a different system with the
same differential structure; in particular, we are interested to the case where
the target system is an autonomous system of conservation laws, i.e.,

∂U1

∂X1
+
∂U2

∂X2
+
∂U3

∂X3
+
∂U4

∂X4
= 0,

∂U2

∂X1
+
∂P1

∂X2
+
∂P2

∂X3
+
∂P3

∂X4
= 0,

∂U3

∂X1
+
∂P4

∂X2
+
∂P5

∂X3
+
∂P6

∂X4
= 0,

∂U4

∂X1
+
∂P7

∂X2
+
∂P8

∂X3
+
∂P9

∂X4
= 0,

∂U5

∂X1
+
∂P10

∂X2
+
∂P11

∂X3
+
∂P12

∂X4
= 0,

(4.13)

where Pi ≡ Pi(U1, U2, U3, U4, U5) (i = 1, . . . , 12). Of course, a given sys-
tem falling in the class (4.8) can be mapped by an equivalence transforma-
tion to a system having the form (4.13) provided that the functions pi(x,u)
(i = 1, . . . , 16) have special functional forms. To simplify the computation,
we exchange source and target system; in fact, taking the inverse transfor-
mation of (4.12) (which is obtained by exchanging lower and capital let-
ters and replacing a with −a), and starting from the autonomous system
(4.13) of conservation laws, we are able to obtain the equivalent nonau-
tonomous system of balance laws. In such a way, we are able to identify, for
a given equivalence transformation, the elements of the class (4.8) that can
be mapped to a system of autonomous conservation laws.

Now, since we start from an autonomous system of conservation laws
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to arrive to a nonautonomous system of balance laws, let us write the oper-
ators (4.10) in terms of the capital letters; then, we build the corresponding
finite transformations.

4.3 Finite transformations

In this Section, we integrate the Lie’s equations corresponding to the
operators Ξ1, . . . ,Ξ12 (4.10), and construct the finite transformations lead-
ing us to obtain systems of the form (4.8) that can be mapped to the form
(4.13). The most general finite transformation can be recovered by compo-
sition of the finite transformations induced by each generator.

4.3.1 Finite transformations generated by Ξ1

By considering the generator Ξ1,

Ξ1 = f(X1)∂X1 − f ′(X1) (U2∂U2 + U3∂U3 + U4∂U4) , (4.14)

where we renamed the function f1 as f , we get the finite transformation

x1 = x̃1(X1; a), x2 = X2, x3 = X3, x4 = X4,

u1 = U1, u2 = U2
f(X1)

f(x̃1)
, u3 = U3

f(X1)

f(x̃1)
,

u4 = U4
f(X1)

f(x̃1)
, u5 = U5,

(4.15)

x̃1(X1; a) being such that x̃1(X1; 0) = X1 and ∂X1 x̃1 =
f(x̃1)

f(X1)
, whereupon

we may write

U1 = u1, U2 = u2∂X1 x̃1, U3 = u3∂X1 x̃1,

U4 = u4∂X1 x̃1, U5 = u5,
(4.16)

and system (4.8) is equivalent to system (4.13) with

pk =
Pk

(∂X1 x̃1)2
, k = 1, . . . , 12,

p13 = −u2

∂2
X1X1

x̃1

(∂X1 x̃1)2
, p14 = −u3

∂2
X1X1

x̃1

(∂X1 x̃1)2
,

p15 = −u4

∂2
X1X1

x̃1

(∂X1 x̃1)2
, p16 = 0,

(4.17)

where Pk = Pk(u1, u2∂X1 x̃1, u3∂X1 x̃1, u4∂X1 x̃1, u5) (k = 1, . . . , 12).

4.3.2 Finite transformations generated by Ξ2, Ξ3, Ξ4

By considering the generators Ξi (i = 2, . . . , 4),

Ξi = f(X)∂Xi +

4∑
k=1

(Uk∂Xkf(X)∂Ui − Uk∂Xif(X)∂Uk) , (4.18)
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where we renamed the function fi as f , we may write the general finite
transformation arising from the integration of Lie’s equations in the three
cases in a unified form:

xk =

{
Xk, k = 1, . . . , 4, k 6= i

x̃k(X; a), k = i,

uk =



Uk
f(X)

f(x̃)
, k = 1, . . . , 4, k 6= i,

Uk + f(X)
4∑

j=1,j 6=i
Uj

∫ a

0

∂Xjf(x̃)

f(x̃)
da, k = i,

Uk, k = 5,
(4.19)

where x̃i(X; a) is such that x̃i(X; 0) = Xi and

∂Xk x̃i =


f(x̃)

∫ a

0

∂Xkf(x̃)

f(x̃)
da, k 6= i,

f(x̃)

f(X)
, k = i.

(4.20)

By introducing the matrix J with the (j, k)–entry equal to ∂Xk x̃j (j, k =
1, . . . , 4), the (5, 5)–entry equal to ∂Xi x̃i and all remaining entries vanishing,
we may write

u = AU, A =
J

∂Xi x̃i
; (4.21)

moreover, by defining the matrices

q =


u1 u2 u3 u4 0
u2 p1 p2 p3 0
u3 p4 p5 p6 0
u4 p7 p8 p9 0
u5 p10 p11 p12 0

 , Q =


U1 U2 U3 U4 0
U2 P1 P2 P3 0
U3 P4 P5 P6 0
U4 P7 P8 P9 0
U5 P10 P11 P12 0

 , (4.22)

system (4.13) is mapped to system (4.8) with

q = AQJT ,

p11+m =

5∑
j=1

Amj

5∑
`=1

(
4∑

k=1

uk
∂2R`j
∂U`∂Xk

−
5∑

k=1

uk
∂2R`j
∂Uk∂X`

)
(4.23)

(m = 2, . . . , 5), where R`j is the generic entry of the matrix JQT , and it is
Pk = Pk(U) (k = 1, . . . 12), with U defined by (4.21); note that the right
hand side of (4.23)2 is vanishing for m = 1.

4.3.3 Finite transformations generated by Ξ5, Ξ6, Ξ7, Ξ8

By considering the generator Ξ4+i (i = 1, . . . , 4),

Ξ4+i = Uif(X)∂U5 , (4.24)
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where we renamed the function f4+i as f , we get from Lie’s equations the
finite transformation

xk = Xk, uk = UK , k = 1, . . . , 4, u5 = U5 − aUif(X). (4.25)

System (4.13) is equivalent to system (4.8) if

pk = Pk, k = 1, . . . 9,

p9+k =

{
P9+k + auk+1f(x), i = 1,

P9+k + aP3i+k−6f(x), i = 2, . . . , 4,
k = 1, . . . , 3,

p12+k = aui

4∑
j=2

∂Xjf(x)∂U5P3k+j−4, k = 1, . . . , 3,

p16 =



aui

∂X1f(x) +

4∑
j=2

∂Xjf(x)∂U5P8+j

 , i = 1,

aui

∂X1f(x) +
4∑
j=2

∂Xjf(x) (∂U5P8+j + af(x)∂U5P3i+j−7)

 ,

i = 2, . . . , 4,
(4.26)

where Pk = Pk(u1, u2, u3, u4, u5 + auif(x)) (k = 1, . . . , 12).

4.3.4 Finite transformations generated by Ξ9

By considering the generator Ξ9,

Ξ9 = U5f(X)∂U5 , (4.27)

where we renamed the function f9 as f , we get from Lie’s equations the
finite transformation

xk = Xk, uk = Uk, k = 1, . . . , 4, u5 = U5 exp(af(X)). (4.28)

System (4.13) is equivalent to system (4.8) provided that:

pk = Pk,

p12+i = a exp (−af(x))

 4∑
j=2

∂Xjf(x)∂U5P3i+j−4

u5,

p16 = a

∂X1f(x) +
4∑
j=2

∂Xjf(x)∂U5P8+j

u5,

(4.29)

where i = 1, . . . , 3, and Pk = Pk(u1, u2, u3, u4, u5 exp(−af(x))) with
k = 1, . . . , 12.
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4.3.5 Finite transformations generated by Ξ10

By considering the generator Ξ10,

Ξ10 = f(X)∂U5 , (4.30)

where we renamed the function f10 as f , we get from Lie’s equations the
finite transformation

xk = Xk, uk = Uk, k = 1, . . . , 4, u5 = U5 + af(X), (4.31)

and the equivalence between (4.8) and (4.13) is recovered provided that

pk = Pk, k = 1, . . . , 12,

p12+i = a
4∑
j=2

∂Xjf(x)∂U5P3i+j−4, i = 1, . . . , 3,

p16 = a

∂X1f(x) +
4∑
j=2

∂Xjf(x)∂U5P8+j

 ,

(4.32)

where Pk = Pk(u1, u2, u3, u4, u5 − af(x)).

4.3.6 Finite transformations generated by Ξ11

By considering the generator Ξ11,

Ξ11 =

4∑
k=1

gk(X)∂Uk , (4.33)

where we renamed the functions f10+k as gk, along with the constraint
4∑

k=1

∂Xkgk(X) = 0, and integrating Lie’s equations, the following finite trans-

formation arises:

xk = Xk, uk = Uk + agk(x), k = 1, . . . , 4, u5 = U5. (4.34)

System (4.13) is equivalent to system (4.8) provided that:

pk = Pk, k = 1, . . . , 12,

p12+` = a

∂X1g`+1(x) +

4∑
i=1

4∑
j=2

∂Xjgi(x)∂UiP3`+j−4

 , ` = 1, . . . , 3,

p16 = a

 4∑
i=1

4∑
j=2

∂Xjgi(x)∂UiP8+j

 ,

(4.35)
where Pk = Pk(u1 − ag1(x), u2 − ag2(x), u3 − ag3(x), u4 − ag4(x), u5).
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4.3.7 Finite transformations generated by Ξ12

In this case the finite transformation consists of a uniform scaling of the
dependent variables,

x = X, u = exp(a)U, (4.36)

and for such a transformation there are no balance laws equivalent to con-
servation laws.

4.4 Physical application

In this Section, we make some assumptions on the form of the functions
involved in the generators of equivalence transformations in order to deal
with physically relevant systems of differential equations. In particular,
we construct the finite transformations corresponding to the infinitesimal
generator

∑4
i=1 Ξi, where we assume

f2 = n1(X1)X2 + n2(X1)X3,

f3 = −n2(X1)X2 + n1(X1)X3,

f4 = n3(X1),

(4.37)

with ni(X1) (i = 1, . . . , 3) arbitrary functions depending on X1.
Integration of Lie’s equations provides:

x1 = x̃1(X1; a),

x2 = x̃2(X1, X2, X3; a) =

= exp (m1(X1; a)) (X2 cos (m2(X1; a)) +X3 sin (m2(X1; a))) ,

x3 = x̃3(X1, X2, X3; a) =

= exp (m1(X1; a)) (−X2 sin (m2(X1; a)) +X3 cos (m2(X1; a))) ,

x4 = x̃4(X1, X4; a) = X4 +m3(X1; a),

U1 = exp (2m1(X1; a))u1,

U2 = exp (m1(X1; a)) [(u2 cos (m2(X1; a))− u3 sin (m2(X1; a))) ∂X1 x̃1

−u1 (∂X1 x̃2 cos (m2(X1; a))− ∂X1 x̃3 sin (m2(X1; a)))] ,

U3 = exp (m1(X1; a)) [(u2 sin (m2(X1; a)) + u3 cos (m2(X1; a))) ∂X1 x̃1

−u1 (∂X1 x̃2 sin (m2(X1; a)) + ∂X1 x̃3 cos (m2(X1; a)))] ,

U4 = exp (2m1(X1; a)) (u4∂X1 x̃1 − u1∂X1 x̃4) ,

U5 = u5,
(4.38)
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where

mi(X1; a) =

∫ x1

X1

ni(s)

f1(s)
ds, ñi(X1; a) = ni(x1)− ni(X1), i = 1, . . . , 3,

∂X1 x̃1 =
f1(x1)

f1(X1)
, ∂X1 x̃2 =

ñ1(X1; a)x2 + ñ2(X1; a)x3

f1(X1)
,

∂X1 x̃3 =
−ñ2(X1; a)x2 + ñ1(X1; a)x3

f1(X1)
, ∂X1 x̃4 =

ñ3(X1; a)

f1(X1)
.

(4.39)
System (4.13) describes the 3D unsteady flow of an ideal fluid subject to no
extraneous force along with the choices

U1 = ρ, U2 = ρu, U3 = ρv, U4 = ρw, U5 = ρS,

P1 =
U2

2

U1
+ p(U1, U5), P2 = P4 =

U2U3

U1
, P3 = P7 =

U2U4

U1
,

P5 =
U2

3

U1
+ p(U1, U5), P6 = P8 =

U3U4

U1
, P9 =

U2
4

U1
+ p(U1, U5),

P10 =
U2U5

U1
, P11 =

U3U5

U1
, P12 =

U4U5

U1
,

(4.40)
ρ being the fluid mass density, (u, v, w) the components of its velocity, S the
entropy, and p(ρ, S) the pressure. Thorugh the transformation (4.38), we
get the system (4.8) with

p1 =
u2

2

u1
+
p(exp(−2m1)u1, u5)

(∂X1 x̃1)2
, p2 = p4 =

u2u3

u1
, p3 = p7 =

u2u4

u1
,

p5 =
u2

3

u1
+
p(exp(−2m1)u1, u5)

(∂X1 x̃1)2
, p6 = p8 =

u3u4

u1
, p10 =

u2u5

u1
,

p9 =
u2

4

u1
+
p(exp(−2m1)u1, u5)

(∂X1 x̃1)2
, p11 =

u3u5

u1
, p12 =

u4u5

u1
,

p13 = 2
∂X1m1u2 + ∂X1m2u3

∂X1 x̃1
+
x2(∂2

X1X1
m1 − (∂X1m1)2 + (∂X1m2)2)

(∂X1 x̃1)2
u1

+
x3(∂2

X1X1
m2 − 2∂X1m1∂X1m2)

(∂X1 x̃1)2
u1 −

∂2
X1X1

x̃1

(∂X1 x̃1)2
u2,

p14 = 2
∂X1m1u3 − ∂X1m2u2

∂X1 x̃1
−
x2(∂2

X1X1
m2 − 2∂X1m1∂X1m2)

(∂X1 x̃1)2
u1

+
x3(∂2

X1X1
m1 − (∂X1m1)2 + (∂X1m2)2)

(∂X1 x̃1)2
u1 −

∂2
X1X1

x̃1

(∂X1 x̃1)2
u3,

p15 = −
∂2
X1X1

x̃1

(∂X1 x̃1)2
u4 +

∂2
X1X1

x̃4

(∂X1 x̃1)2
u1, p16 = 2

∂X1m1

∂X1 x̃1
u5.

By choosing ∂X1 x̃1 = 1 (whereupon x1 = X1 +a), m1 = 0, m2 = ωX1 +X10 ,

m3 =
gX2

1

2
+ a1X1 + a0, where ω, a0, a1, a2, g and X10 are constants, we
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recover the system

∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
+
∂u4

∂x4
= 0,

∂u2

∂x1
+

∂

∂x2

(
u2

2

u1
+ p(u1, u5)

)
+

∂

∂x3

(
u2u3

u1

)
+

∂

∂x4

(
u2u4

u1

)
=

= 2ωu3 − ω2x2u1,

∂u3

∂x1
+

∂

∂x2

(
u2u3

u1

)
+

∂

∂x3

(
u2

3

u1
+ p(u1, u5)

)
+

∂

∂x4

(
u3u4

u1

)
=

= −2ωu2 + ω2x3u1,

∂u4

∂x1
+

∂

∂x2

(
u2u4

u1

)
+

∂

∂x3

(
u3u4

u1

)
+

∂

∂x4

(
u2

4

u1
+ p(u1, u5)

)
= gu1,

∂u5

∂x1
+

∂

∂x2

(
u2u5

u1

)
+

∂

∂x3

(
u3u5

u1

)
+

∂

∂x4

(
u4u5

u1

)
= 0.

With obvious identifications, we recognize the equations of an ideal gas in
a non–inertial frame rotating with constant angular velocity ω around the
vertical x4–axis and subject to gravity. This implies that the Euler equations
for an ideal gas in a non–inertial frame rotating with constant angular ve-
locity around a vertical axis and subject to gravity can be transformed in a
form where the gravity and apparent forces disappear.

4.5 Conclusions

In this Chapter, we have characterized a class of partial differential
equations in four independent variables expressed under the form of a lin-
ear conservation law and four nonautonomous nonlinear balance laws that
can be transformed by an invertible point transformation into an autonom-
ous system of conservation laws. This has been accomplished through the
use of equivalence transformations. The general results obtained have been
specialized in order to deal with a model of physical interest. In particular,
it has been shown the equivalence of the 3D unsteady Euler equations of an
ideal gas subject to gravity and Coriolis forces with the corresponding sys-
tem where forces are absent. The approach used, and based on equivalence
transformations, allows one to determine the members of a general class
of partial differential equations that can be mapped by an invertible point
transformation to a target system with suitable properties, e.g., a system of
autonomous conservation laws.
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5 Transformations of nonlinear
first order systems

IN this Chapter, we present some new results about the use of Lie symme-
tries for transforming a given nonlinear first order system of differential

equations into an equivalent form. At first, a theorem providing neces-
sary conditions enabling one to map a nonlinear system of first order par-
tial differential equations to an equivalent first order autonomous and ho-
mogeneous quasilinear system is given. The reduction to quasilinear form
is performed by constructing the canonical variables associated to the Lie
point symmetries admitted by the nonlinear system. Some applications to
relevant partial differential equations (second order Monge–Ampère equa-
tions) are given. An application related to a partial differential equation
defining a surface in R3 whose Gaussian curvature is proportional to the
mean curvature showing that the conditions for transforming to quasilin-
ear form are only necessary is given.

In the second part of this Chapter, a theorem providing necessary and
sufficient conditions enabling one to map a nonlinear system of first order
partial differential equations, polynomial in the derivatives, to an equiva-
lent autonomous first order system polynomially homogeneous in the de-
rivatives is proved. Moreover, several classes of first order Monge–Ampère
systems, either with constant coefficients or with coefficients depending on
the field variables, are considered. The results presented in this Chapter are
contained in [31, 32].

5.1 Reduction to quasilinear autonomous and homo-
geneous form

In this Section, we shall consider nonlinear systems of first order partial
differential equations; nevertheless, it is worth of being recalled that higher
order partial differential equations can always be rewritten (though not in
a unique way!) as first order systems.

Among the first order systems of partial differential equations, a special
role is played by quasilinear systems either for their mathematical proper-
ties or for their ubiquity in the applications.

Here, we consider nonlinear first order systems and investigate whether
they can be reduced by an invertible point transformation to an equiva-
lent first order system of autonomous and homogeneous quasilinear equa-
tions. First order autonomous and homogeneous quasilinear systems pos-
sess many relevant features: for instance, they admit self–similar solutions
suitable to describe rarefaction waves. Also, many efficient numerical
schemes useful for investigating physically relevant problems are available
for such a kind of systems. We give necessary conditions for such a reduc-
tion.
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5.1.1 Necessary conditions

Let us consider a general nonlinear first order system of partial differ-
ential equations,

∆
(
x,u,u(1)

)
= 0, (5.1)

where x ∈ Rn are the independent variables, u ∈ Rm the dependent vari-
ables, and u(1) denotes the set of all first order derivatives of u with respect
to x. We want to exploit the possibility of constructing an invertible map-
ping like

z = Z(x,u), w = W(x,u), (5.2)

allowing us to map it to a quasilinear homogeneous and autonomous sys-
tem. When this is possible then necessarily the nonlinear system has to pos-
sess a suitable (n+1)–dimensional solvable Lie algebra as subalgebra of the
algebra of its Lie point symmetries.

Let us suppose that system (5.1) can be mapped through an invert-
ible point transformation like (5.2) into an autonomous and homogeneous
quasilinear system, say

n∑
i=1

Ai(w)
∂w

∂zi
= 0, (5.3)

where Ai (i = 1, . . . , n) are m×m matrices with entries depending at most
on w. Every system like (5.3) admits the Lie point symmetries generated by
the following vector fields:

Ξi =
∂

∂zi
, i = 1, . . . , n,

Ξn+1 =
n∑
i=1

zi
∂

∂zi
;

(5.4)

these vector fields span an (n+ 1)–dimensional solvable Lie algebra where
the only non–zero commutators are

[Ξi,Ξn+1] = Ξi, i = 1, . . . , n. (5.5)

Moreover, the first n vector fields span an n–dimensional Abelian Lie alge-
bra, and generate a distribution of rank n.

Since neither the rank of a distribution nor the Lie bracket of two in-
finitesimal generators of symmetries is affected by an invertible change of
coordinates, it follows that if a system of the form (5.1) can be mapped by
the invertible point transformation (5.2) to the form (5.3) it has to admit, as
subalgebra of the Lie algebra of its point symmetries, an (n+1)–dimensional
Lie algebra with a suitable algebraic structure.

Therefore, the following theorem is proved.

Theorem 5.1.1. A necessary condition in order the nonlinear first order system

∆
(
x,u,u(1)

)
= 0 (5.6)

be transformed by the invertible map

z = Z(x,u), w = W(x,u), (5.7)
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into an autonomous and homogeneous quasilinear first order system is that it ad-
mits as subalgebra of its Lie point symmetries an (n+ 1)–dimensional Lie algebra
spanned by

Ξi =

n∑
j=1

ξji (x,u)
∂

∂xj
+

m∑
A=1

ηAi (x,u)
∂

∂uA
, i = 1, . . . , n+ 1, (5.8)

such that

[Ξi,Ξj ] = 0, [Ξi,Ξn+1] = Ξi, i, j = 1, . . . , n. (5.9)

Furthermore, the vector fields Ξ1, . . . ,Ξn have to generate a distribution of rank
n. The new independent and dependent variables are the canonical variables asso-
ciated to the symmetries generated by Ξ1, . . . ,Ξn, say

Ξi(zj) = δij , Ξi(w) = 0, i, j = 1, . . . , n, (5.10)

where δij is the Kronecker symbol. Finally, the variables w, which by construction
are invariants of Ξ1, . . . ,Ξn, must result invariant with respect to Ξn+1 too.

Proof. The proof follows from the above considerations. The construction
of the new independent and dependent variables, which are the canonical
variables of the admitted symmetries, is the same as the one given below in
Theorem 5.3.1.

The conditions required by Theorem 5.1.1 are not sufficient to guarantee
the transformation to quasilinear form, as shown by next example.

Example 5.1.1. Let us consider the first order system made by the equations

∂u1

∂x2
− ∂u2

∂x1
= 0,

κ1

(
∂u1

∂x2

)4

+

(
κ2
∂u1

∂x1

∂u2

∂x2
+ κ3

(
∂u1

∂x2

)2
)
∂u1

∂x1

∂u2

∂x2

+

(
κ4
∂u1

∂x1

∂u2

∂x2
+ κ5

(
∂u1

∂x2

)2
)
∂u1

∂x1
+

(
κ6
∂u1

∂x1

∂u2

∂x2
+ κ7

(
∂u1

∂x2

)2
)
∂u1

∂x2

+

(
κ8
∂u1

∂x1

∂u2

∂x2
+ κ9

(
∂u1

∂x2

)2
)
∂u2

∂x2
+ κ10

(
∂u1

∂x1

)2

+ κ11
∂u1

∂x1

∂u1

∂x2

+ κ12
∂u1

∂x1

∂u2

∂x2
+ κ13

(
∂u1

∂x2

)2

+ κ14
∂u1

∂x2

∂u2

∂x2
+ κ15

(
∂u2

∂x2

)2

= 0,

(5.11)
with u1(x1, x2), u2(x1, x2) scalar functions, and κi (u1, u2) (i = 1, . . . , 15) arbi-
trary smooth functions of the indicated arguments.

It can be easily ascertained that system (5.11) admits the Lie point symmetries
spanned by the operators

Ξ1 =
∂

∂x1
, Ξ2 =

∂

∂x2
,

Ξ3 = (x1 − au1 − bu2)
∂

∂x1
+ (x2 − bu1 − cu2)

∂

∂x2
,

(5.12)
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a, b, c being constants, provided that the conditions

κ1 − c2κ10 + bcκ11 − acκ12 − b2κ13 + abκ14 − a2κ15 = 0,

κ2 − c2κ10 + bcκ11 − acκ12 − b2κ13 + abκ14 − a2κ15 = 0,

κ3 + 2(c2κ10 − bcκ11 + acκ12 + b2κ13 − abκ14 + a2κ15) = 0,

κ4 + 2cκ10 − bκ11 + aκ12 = 0,

κ5 − 2cκ10 + bκ11 − aκ12 = 0,

κ6 + cκ11 − 2bκ13 + aκ14 = 0,

κ7 − cκ11 + 2bκ13 − aκ14 = 0,

κ8 + cκ12 − bκ14 + 2aκ15 = 0,

κ9 − cκ12 + bκ14 − 2aκ15 = 0

(5.13)

are satisfied.
Since

[Ξ1,Ξ2] = 0, [Ξ1,Ξ3] = Ξ1, [Ξ2,Ξ3] = Ξ2, (5.14)

applying the theorem, we introduce the new independent and dependent variables

z1 = x1 − au1 − bu2, z2 = x2 − bu1 − cu2,

w1 = u1, w2 = u2,
(5.15)

and the nonlinear system (5.11) reduces to

∂w1

∂z2
− ∂w2

∂z1
= 0,

κ10

(
∂w1

∂z1

)2

+ κ11
∂w1

∂z1

∂w1

∂z2
+ κ12

∂w1

∂z1

∂w2

∂z2

+ κ13

(
∂w1

∂z2

)2

+ κ14
∂w1

∂z2

∂w2

∂z2
+ κ15

(
∂w2

∂z2

)2

= 0,

(5.16)

i.e., reads as an autonomous system polynomially homogeneous in the derivatives.
We notice that system (5.16), by specializing the functions κ10, . . . , κ15 as fol-

lows,
κ10 = −κ(1 + w2

2)2,

κ11 = 4κw1w2(1 + w2
2),

κ12 = 2((2− κ)(1 + w2
1 + w2

2)− κw2
1w

2
2),

κ13 = −4(1 + w2
1 + w2

2 + κw2
1w

2
2),

κ14 = 4κw1w2(1 + w2
1),

κ15 = −κ(1 + w2
1)2,

(5.17)

is equivalent to the second order partial differential equation

κ
(
1 + w2

z2

)2
w2
z1z1 − 4κwz1wz2

(
1 + w2

z2

)
wz1z1wz1z2

− 2
(
(2− κ)

(
1 + w2

z1 + w2
z2

)
− κw2

z1w
2
z2

)
wz1z1wz2z2

+ 4
(
1 + w2

z1 + w2
z2 + κw2

z1w
2
z2

)
w2
z1z2

− 4κwz1wz2
(
1 + w2

z1

)
wz1z2wz2z2 + κ

(
1 + w2

z1

)2
w2
z2z2 = 0,

(5.18)
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where wz1 =
∂w

∂z1
= w1, wz2 =

∂w

∂z2
= w2, and κ is an arbitrary function of wz1

and wz2 .
Considering a smooth surface in R3 with the metric ds2 = dz2

1 + dz2
2 + dw2,

and its Gaussian and mean curvature,

G =
wz1z1wz2z2 − w2

z1z2

(1 + w2
z1 + w2

z2)2
,

H =
1

2

(1 + w2
z2)wz1z1 − 2wz1wz2wz1z2 + (1 + w2

z1)wz2z2
(1 + w2

z1 + w2
z2)3/2

,

(5.19)

respectively, equation (5.18) can be written as

G = κH2, (5.20)

whereupon it should be κ(wz1 , wz2) ≤ 1. In the limit case κ ≡ 1, Eq. (5.20)
characterizes a surface with all its points umbilic; it is known that a surface with
all its points umbilic is a (open) domain of a plane or a sphere [79]. It is worth of
being remarked that Eq. (5.20) with κ ≡ 1 is strongly Lie remarkable [60], since
it is the unique second order partial differential equation uniquely characterized by
the conformal Lie algebra in R3 [59].

Remark 5.1.1. Notice that the Example 5.1.1 provides a system polynomial in
the derivatives which is transformed into a system polynomially homogeneous of
degree 2 in the derivatives.

Remark 5.1.2. Theorem 5.1.1 can be used also when the nonlinear source system
is autonomous. In such a way, when the hypotheses of the theorem are satisfied, the
target system should be autonomous too; in fact, only in this case the invariance
with respect to the homogeneous scaling of the independent variables of the target
system implies that the system is a homogeneous polynomial in the derivatives (a
quasilinear system if the degree of the homogeneous polynomial is 1).

As we will show later, if the nonlinear system of partial differential
equations involves the derivatives in polynomial form, then the conditions
of Theorem 5.1.1 are necessary and sufficient for the mapping into a system
where each equation is a homogeneous polynomial in the derivatives.

5.2 Applications

In this Section, we provide some examples of systems of first order non-
linear partial differential equations, whose Lie symmetries satisfy the con-
ditions of Theorem 5.1.1, and prove that they can be transformed under
suitable conditions to quasilinear autonomous and homogeneous systems.
The nonlinear first order systems are obtained from second order (1 + 1)–,
(2+1)– and (3+1)–dimensional Monge–Ampère equations (see [50] for de-
tails). It is worth of noticing that some classes of these systems have been
proved to be linearizable by invertible point transformations in [67].

Hereafter, to shorten the formulas, we use the notation u,i and u,ij to
indicate the first order partial derivative of u with respect to xi, and the
second order partial derivative of u with respect to xi and xj , respectively.
Moreover, we shall denote with f;i and f;ij the first order partial derivative
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of the function f with respect to ui and the second order partial derivative
of f with respect to ui and uj , respectively.

5.2.1 Monge–Ampère equation in (1 + 1) dimensions

In 1968, Boillat [12] proved that the most general completely exceptional
second order equation in (1 + 1) dimensions is the well known Monge–
Ampère equation,

κ1

(
u,11u,22 − u2

,12

)
+ κ2u,11 + κ3u,12 + κ4u,22 + κ5 = 0, (5.21)

with u(x1, x2) a scalar function, and κi (x1, x2, u, u,1, u,2) (i = 1, . . . , 5) arbi-
trary smooth functions of the indicated arguments.

By introducing
u1 = u,1, u2 = u,2, (5.22)

along with the assumptions that the functions κi (i = 1, . . . , 5) depend at
most on (u1, u2), we obtain the following nonlinear first order system:

u2,1 − u1,2 = 0,

κ1

(
u1,1u2,2 − u2

1,2

)
+ κ2u1,1 + κ3u1,2 + κ4u2,2 + κ5 = 0.

(5.23)

Through the substitutions

u1 → u1 + α1x1 + α2x2, u2 → u2 + α2x1 + α3x2, (5.24)

αi (i = 1, . . . , 3) being constant, we get the system

u2,1 − u1,2 = 0,

κ1

(
u1,1u2,2 − u2

1,2

)
+ (α3κ1 + κ2)u1,1

+ (−2α2κ1 + κ3)u1,2 + (α1κ1 + κ4)u2,2

+ ((α1α3 − α2
2)κ1 + α1κ2 + α2κ3 + α3κ4 + κ5) = 0.

(5.25)

The nonlinear system (5.25) becomes homogeneous if

κ5 = −((α1α3 − α2
2)κ1 + α1κ2 + α2κ3 + α3κ4), (5.26)

and in such a case it is straightforward to recognize that it admits the Lie
point symmetries spanned by the operators

Ξ1 =
∂

∂x1
, Ξ2 =

∂

∂x2
, Ξ3 = (x1 − f;1)

∂

∂x1
+ (x2 − f;2)

∂

∂x2
, (5.27)

where f(u1, u2) is an arbitrary smooth function of its arguments, provided
that

κ1 =
−κ2f;22 + κ3f;12 − κ4f;11

1 + α3f;22 + 2α2f;12 + α1f;11
. (5.28)

Since
[Ξ1,Ξ2] = 0, [Ξ1,Ξ3] = Ξ1, [Ξ2,Ξ3] = Ξ2, (5.29)

we introduce the new variables

z1 = x1 − f;1, z2 = x2 − f;2, w1 = u1, w2 = u2, (5.30)
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and the generators of the point symmetries write as

Ξ1 =
∂

∂z1
, Ξ2 =

∂

∂z2
, Ξ3 = z1

∂

∂z1
+ z2

∂

∂z2
. (5.31)

In terms of the new variables (5.30), the nonlinear system (5.25) becomes

w2,1 − w1,2 = 0,

(α3κ1 + κ2)w1,1 + (−2α2κ1 + κ3)w1,2 + (α1κ1 + κ4)w2,2 = 0,
(5.32)

i.e., reads as an autonomous and homogeneous quasilinear system.
The following example provides a physical system leading to a Monge–

Ampère equation.

Example 5.2.1 (One–dimensional Euler equations of isentropic fluids). Let
us consider the Euler equations for an isentropic fluid

ρ,1 + (ρv),2 = 0,

(ρv),1 + (ρv2 + p(ρ, s)),2 = 0,

s,1 + vs,2 = 0,

(5.33)

where ρ is the fluid density, v the velocity, s the entropy, p(ρ, s) the pressure which
is a function of the density and the entropy, x1 the time, and x2 the space variable.

By introducing a potential function φ such that

ρ = φ,2, ρv = −φ,1 (5.34)

it results s = s(φ). Moreover, by introducing ψ and u such that

ρv = ψ,2 = −φ,1, ρv2 + p = −ψ,1,
ψ = −u,1, φ = u,2,

(5.35)

we arrive to the nonlinear equation

u,11 =
u2
,12

u,22
+ p(u,22, s(u,1)). (5.36)

This equation becomes of Monge–Ampère type for the class of fluids characterized
by the constitutive law of Von Kármán [93]

p = −κ
2(s)

ρ
+ b(s), (5.37)

where κ(s) and b(s) are functions of the entropy. What we get is

u,11u,22 − u2
,12 + κ2(s(u,2))− b(s(u,2))u,22 = 0. (5.38)

The nonlinear first order system derived from equation (5.38) belongs to the class
of equations (5.23) and is mapped to a homogeneous and autonomous quasilinear
system provided that

κ2(s(u2)) = α2
2 − α3(α1 + b(s(u2)),

b(s(u2)) =
1 + α3f;22 + 2α2f;12 + α1f;11

f;11
,

(5.39)
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and f(u1, u2) is such that

∂

∂u1

(
1 + α3f;22 + 2α2f;12

f;11

)
= 0. (5.40)

5.2.2 Monge–Ampère equation in (2 + 1) dimensions

The most general second order hyperbolic completely exceptional equa-
tion in (2 + 1) dimensions has been determined in 1973 by Ruggeri [84]; it is
a linear combination of the determinant and all minors extracted from the
3 × 3 Hessian matrix of u(x1, x2, x3) with coefficients κi (i = 1, . . . , 14) de-
pending on the independent variables, the dependent variable and its first
order derivatives. This equation can be written in the following form:

κ1H + κ2
∂H

∂u,11
+ κ3

∂H

∂u,12
+ κ4

∂H

∂u,13
+ κ5

∂H

∂u,22
+ κ6

∂H

∂u,23
+ κ7

∂H

∂u,33

+ κ8u,11 + κ9u,12 + κ10u,13 + κ11u,22 + κ12u,23 + κ13u,33 + κ14 = 0,
(5.41)

where H is the determinant of the 3× 3 Hessian matrix of u.
Let us assume κi (i = 1, . . . , 14) depending at most on first order deriva-

tives of u. By introducing

u1 = u,1, u2 = u,2, u3 = u,3, (5.42)

the following nonlinear first order system is obtained:

u2,1 − u1,2 = 0, u3,1 − u1,3 = 0, u3,2 − u2,3 = 0,

κ1H + κ2
∂H

∂u1,1
+ κ3

∂H

∂u1,2
+ κ4

∂H

∂u1,3
+ κ5

∂H

∂u2,2
+ κ6

∂H

∂u2,3
+ κ7

∂H

∂u3,3

+ κ8u1,1 + κ9u1,2 + κ10u1,3 + κ11u2,2 + κ12u2,3 + κ13u3,3 + κ14 = 0.
(5.43)

As done in the previous subsection, the substitutions

u1 → u1 + α1x1 + α2x2 + α3x3,

u2 → u2 + α2x1 + α4x2 + α5x3,

u3 → u3 + α3x1 + α5x2 + α6x3,

(5.44)

αi (i = 1, . . . , 6) being constant, provided that

κ14 = (α1α
2
5 + α2

2α6 − α1α4α6 − 2α2α3α5 + α2
3α4)κ1 − (α2

5 − α4α6)κ2

+ 2(α2α6 − α3α5)κ3 + 2(α3α4 − α2α5)κ4 + (α2
3 − α1α6)κ5

+ 2(α1α5 − α2α3)κ6 + (α2
2 − α1α4)κ7 − α1κ8 − α2κ9 − α3κ10

− α4κ11 − α5κ12 − α6κ13,
(5.45)
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allow us to get a homogeneous system with the same differential structure
as (5.43), say

u2,1 − u1,2 = 0, u3,1 − u1,3 = 0, u3,2 − u2,3 = 0,

κ̂1H + κ̂2
∂H

∂u1,1
+ κ̂3

∂H

∂u1,2
+ κ̂4

∂H

∂u1,3
+ κ̂5

∂H

∂u2,2
+ κ̂6

∂H

∂u2,3
+ κ̂7

∂H

∂u3,3

+ κ̂8u1,1 + κ̂9u1,2 + κ̂10u1,3 + κ̂11u2,2 + κ̂12u2,3 + κ̂13u3,3 = 0,
(5.46)

where the expression of κ̂i in terms of the coefficients κi (i = 1, . . . , 13) and
the constants αj (j = 1, . . . , 6) can be easily found.

The nonlinear system (5.46) admits the Lie point symmetries spanned
by the operators

Ξ1 =
∂

∂x1
, Ξ2 =

∂

∂x2
, Ξ3 =

∂

∂x3
,

Ξ4 = (x1 − f;1)
∂

∂x1
+ (x2 − f;2)

∂

∂x2
+ (x3 − f;3)

∂

∂x3
,

(5.47)

where f(u1, u2, u3) is a smooth arbitrary function of its arguments, pro-
vided that the following relations hold true:

κ̂1 −H11
f κ̂8 −H12

f κ̂9 −H13
f κ̂10 −H22

f κ̂11 −H23
f κ̂12 −H33

f κ̂13 = 0,

κ̂2 + f;33κ̂11 − f;23κ̂12 + f;22κ̂13 = 0,

2κ̂3 − f;33κ̂9 + f;23κ̂10 + f;13κ̂12 − 2f;12κ13 = 0,

2κ̂4 + f;23κ̂9 − f;22κ̂10 − 2f;13κ̂11 + f;12κ̂12 = 0,

κ̂5 + f;33κ̂8 − f;13κ̂10 + f;11κ̂13 = 0,

2κ̂6 − 2f;23κ̂8 + f;13κ̂9 + f;12κ̂10 − f;11κ̂12 = 0,

κ̂7 + f;22κ̂8 − f;12κ̂9 + f;11κ̂11 = 0,

(5.48)

H ij
f denoting the cofactor of the (i, j)–entry of the Hessian matrix Hf of

the function f(u1, u2, u3). It is evident that conditions (5.48) place severe
restrictions on the coefficients of system (5.46); in fact, they state that the
functions κ̂i (i = 1, . . . , 7) have to be expressed in terms of the coefficients
κ̂i (i = 8, . . . , 13) and the function f . These symmetries generate a 4–
dimensional solvable Lie algebra,

[Ξi,Ξj ] = 0, [Ξi,Ξ4] = Ξi, i, j = 1, . . . , 3, (5.49)

whereupon we may introduce the new variables

z1 = x1 − f;1, z2 = x2 − f;2, z3 = x3 − f;3,
w1 = u1, w2 = u2, w3 = u3,

(5.50)

and the generators of the point symmetries write as

Ξ1 =
∂

∂z1
, Ξ2 =

∂

∂z2
, Ξ3 =

∂

∂z3
,

Ξ4 = z1
∂

∂z1
+ z2

∂

∂z2
+ z3

∂

∂z3
.

(5.51)
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In terms of the new variables (5.50), the nonlinear system (5.46) reduces to

w2,1 − w1,2 = 0, w3,1 − w1,3 = 0, w3,2 − w2,3 = 0,

κ̂8w1,1 + κ̂9w1,2 + κ̂10w1,3 + κ̂11w2,2 + κ̂12w2,3 + κ̂13w3,3 = 0,
(5.52)

i.e., to an autonomous and homogeneous quasilinear system.

5.2.3 Monge–Ampère equation in (3 + 1) dimensions

The most general second order completely exceptional equation in (3 +
1) dimensions has been characterized by Donato et al. [27] and once again it
is given as a linear combination of the determinant and all minors extracted
from the 4 × 4 Hessian matrix of u(x1, x2, x3, x4) with coefficients κi (i =
1, . . . , 43) depending on the independent variables, the dependent variable
and its first order derivatives:

κ1H +
∑
r

κr
∂H

∂u,ij
+
∑
s

κs
∂2H

∂u,kl∂u,mn
+
∑
r

κr+31u,ij + κ43 = 0,

i, j, k, l,m, n = 1, . . . , 4, i ≤ j, k < l, k ≤ m < n,

r =
i(9− i)

2
+ j − 3, s = σmn +

σkl(13− σkl)
2

+ 6,

σab = 4(a− 1)− a(a+ 1)

2
+ b,

(5.53)

where H is the determinant of the 4 × 4 Hessian matrix of u; actually, the
Monge–Ampère equation in (3 + 1) dimensions involves only 42 indepen-
dent coefficients because

∂2H

∂u,12∂u,34
+

∂2H

∂u,13∂u,24
+

∂2H

∂u,14∂u,23
= 0. (5.54)

Hereafter, we assume, without loss of generality, κ24 = 0, and the remaining
functions κi depending at most on first order derivatives.

By introducing

u1 = u,1, u2 = u,2, u3 = u,3, u4 = u,4, (5.55)

the following nonlinear first order system is obtained:

u2,1 − u1,2 = 0, u3,1 − u1,3 = 0, u4,1 − u1,4 = 0,

u3,2 − u2,3 = 0, u4,2 − u2,4 = 0, u4,3 − u3,4 = 0,

κ1H +
∑
r

κr
∂H

∂ui,j
+
∑
s

κs
∂2H

∂uk,l∂um,n
+
∑
r

κr+31ui,j + κ43 = 0.

(5.56)

As done in the previous subsection, the substitutions

u1 → u1 + α1x1 + α2x2 + α3x3 + α4x4,

u2 → u2 + α2x1 + α5x2 + α6x3 + α7x4,

u3 → u3 + α3x1 + α6x2 + α8x3 + α9x4,

u4 → u4 + α4x1 + α7x2 + α9x3 + α10x4,

(5.57)
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provided that κ43 can be suitably expressed in terms of the remaining co-
efficients and of the constants αi (i = 1, . . . , 10), lead to a homogeneous
system like (5.56) where we can assume κ43 = 0.

This nonlinear system admits the Lie point symmetries spanned by the
operators

Ξ1 =
∂

∂x1
, Ξ2 =

∂

∂x2
, Ξ3 =

∂

∂x3
, Ξ4 =

∂

∂x4
,

Ξ5 = (x1 − f;1)
∂

∂x1
+ (x2 − f;2)

∂

∂x2
+ (x3 − f;3)

∂

∂x3
+ (x4 − f;4)

∂

∂x4
,

(5.58)
where f(u1, u2, u3, u4) is a smooth arbitrary function of the indicated argu-
ments, provided that κi (i = 1, . . . , 32) can be expressed suitably in terms of
κj (j = 33, . . . , 42) and f(u1, u2, u3, u4):

κ1 +H11
f κ33 +H12

f κ34 +H13
f κ35 +H14

f κ36 +H22
f κ37 +H23

f κ38 +H24
f κ39

+H33
f κ40 +H34

f κ41 +H44
f κ42 = 0,

κ2 + (f2
;34 − f;33f;44)κ37 + (f;23f;44 − f;24f;34)κ38 + (f;24f;33 − f;23f;34)κ39

+ (f2
;24 − f;22f;44)κ40 + (f;22f;34 − f;23f;24)κ41 + (f2

;23 − f;22f;33)κ42 = 0,

2κ3 + (f;33f;44 − f2
;34)κ34 + (f;24f;34 − f;23f;44)κ35 + (f;23f;34 − f;24f;33)κ36

+ (f;14f;34 − f;13f;44)κ38 + (f;13f;34 − f;14f;33)κ39

+ 2(f;12f;44 − f;14f;24)κ40 + (f;13f;24 − 2f;12f;34 + f;14f;23)κ41

+ 2(f;12f;33 − f;13f;23)κ42 = 0,

2κ4 + (f;24f;34 − f;23f;44)κ34 + (f;22f;44 − f2
;24) + (f;23f;24 − f;22f;34)κ36

+ 2(f;13f;44 − f;14f;34)κ37 + (f;14f;24 − f;12f;44)κ38

+ (f;12f;34 + f;14f;23 − 2f;13f;24)κ39 + (f;12f;24 − f;14f;22)κ41

+ 2(f;13f;22 − f;12f;23)κ42 = 0,

2κ5 + (f;23f;34 − f;24f;33)κ34 + (f;23f;24 − f;22f;34)κ35 + (f;22f;33 − f2
;23)κ36

+ 2(f;14f;33 − f;13f;34)κ37 + (f;12f;34 + f;13f;24 − 2f;14f;23)κ38

+ (f;13f;23 − f;12f;33)κ39 + 2(f;14f;22 − f;12f;24)κ40

+ (f;12f;23 − f;13f;22)κ41 = 0,

κ6 + (f2
;34 − f;33f;44)κ33 + (f;13f;44 − f;14f;34)κ35 + (f;14f;33 − f;13f;34)κ36

+ (f2
;14 − f;11f;44)κ40 + (f;11f;34 − f;13f;14)κ41 + (f2

;13 − f;11f;33)κ42 = 0,

2κ7 + 2(f;23f;44 − f;24f;34)κ33 + (f;14f;34 − f;13f;44)κ34

+ (f;14f;24 − f;12f;44)κ35 + (f;12f;34 + f;13f;24 − 2f;14f;23)κ36

+ (f;11f;44 − f2
;14)κ38 + (f;13f;14 − f;11f;34)κ39 + (f;12f;14 − f;11f;24)κ41

+ 2(f;11f;23 − f;12f;13)κ42 = 0,

2κ8 + 2(f;24f;33 − f;23f;34)κ33 + (f;13f;34 − f;14f;33)κ34

+ (f;12f;34 + f;14f;23 − 2f;13f;24)κ35 + (f;13f;23 − f;12f;33)κ36

+ (f;13f;14 − f;11f;34)κ38 + (f;11f;33 − f2
;13)κ39 + 2(f;11f;24 − f;12f;14)κ40

+ (f;12f;13 − f;11f;23)κ41 = 0,

κ9 + (f2
;24 − f;22f;44)κ33 + (f;12f;44 − f;14f;24)κ34 + (f;14f;22 − f;12f;24)κ36

+ (f2
;14 − f;11f;44)κ37 + (f;11f;24 − f;12f;14)κ39 + (f2

;12 − f;11f;22)κ42 = 0,
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2κ10 + 2(f;22f;34 − f;23f;24)κ33 + (f;13f;24 + f;14f;23 − 2f;12f;34)κ34

+ (f;12f;24 − f;14f;22)κ35 + (f;12f;23 − f;13f;22)κ36

+ 2(f;11f;34 − f;13f;14)κ37 + (f;12f;14 − f;11f;24)κ38

+ (f;12f;13 − f;11f;23)κ39 + (f;11f;22 − f2
;12)κ41 = 0,

κ11 + (f2
;23 − f;22f;33)κ33 + (f;12f;33 − f;13f;23)κ34 + (f;13f;22 − f;12f;23)κ35

+ (f2
;13 − f;11f;33)κ37 + (f;11f;23 − f;12f;13)κ38 + (f2

;12 − f;11f;22)κ40 = 0,

2κ12 − f;44κ40 + f;34κ41 − f;33κ42 = 0,

2κ13 + f;44κ38 − f;34κ39 − f;24κ41 + 2f;23κ42 = 0,

2κ14 − f;34κ38 + f;33κ39 + 2f;24κ40 − f;23κ41 = 0,

2κ15 + f;44κ35 − f;34κ36 − f;14κ41 + 2f;13κ42 = 0,

2κ16 − f;34κ35 + f;33κ36 + 2f;14κ40 − f;13κ41 = 0,

2κ17 + f;34κ34 − f;23κ36 − f;14κ38 + f;12κ41 = 0,

2κ18 − f;44κ37 + f;24κ39 − f;22κ42 = 0,

2κ19 + 2f;34κ37 − f;24κ38 − f;23κ39 + f;22κ41 = 0,

2κ20 + f;44κ34 − f;24κ36 − f;14κ39 + 2f;12κ42 = 0,

2κ21 + f;24κ35 − f;23κ36 − f;14κ38 + f;13κ39 = 0,

2κ22 − f;24κ34 + f;22κ36 + 2f;14κ37 − f;12κ39 = 0,

2κ23 − f;33κ37 + f;23κ38 − f;22κ40 = 0,

2κ25 + f;33κ34 − f;23κ35 − f;13κ38 + 2f;12κ40 = 0,

2κ26 − f;23κ34 + f;22κ35 + 2f;13κ37 − f;12κ38 = 0,

2κ27 − f;44κ33 + f;14κ36 − f;11κ42 = 0,

2κ28 + 2f;34κ33 − f;14κ35 − f;13κ36 + f;11κ41 = 0,

2κ29 + 2f;24κ33 − f;14κ34 − f;12κ36 + f;11κ39 = 0,

2κ30 − f;33κ33 + f;13κ35 − f;11κ40 = 0,

2κ31 + 2f;23κ33 − f;13κ34 − f;12κ35 + f;11κ38 = 0,

2κ32 − f;22κ33 + f;12κ34 − f;11κ37 = 0.

Also in this case, the previous conditions place severe restrictions on the
coefficients of system (5.56) since imply that the functions κi (i = 1, . . . , 32)
have to be expressed in terms of the coefficients κi (i = 33, . . . , 42) and the
function f .

Due to

[Ξi,Ξj ] = 0, [Ξi,Ξ5] = Ξ5, i, j = 1, . . . , 4, (5.59)

we introduce the new variables

z1 = x1 − f;1, z2 = x2 − f;2, z3 = x3 − f;3, z4 = x4 − f;4,
w1 = u1, w2 = u2, w3 = u3, w4 = u4,

(5.60)

and the generators of the point symmetries write as

Ξ1 =
∂

∂z1
, Ξ2 =

∂

∂z2
, Ξ3 =

∂

∂z3
, Ξ4 =

∂

∂z4
,

Ξ5 = z1
∂

∂z1
+ z2

∂

∂z2
+ z3

∂

∂z3
+ z4

∂

∂z4
.

(5.61)



5.3. Reduction to autonomous polynomially homogeneous in the
derivatives form

67

In terms of the new variables (5.60), the nonlinear system (5.56) assumes
the form of an autonomous and homogeneous quasilinear system,

w2,1 − w1,2 = 0, w3,1 − w1,3 = 0, w4,1 − w1,4 = 0,

w3,2 − w2,3 = 0, w4,2 − w2,4 = 0, w4,3 − w3,4 = 0,

κ33w1,1 + κ34w1,2 + κ35w1,3 + κ36w1,4 + κ37w2,2 + κ38w2,3

+ κ39w2,4 + κ40w3,3 + κ41w3,4 + κ42w4,4 = 0,

(5.62)

where κi = κi(w1, w2, w3, w4) (i = 33, . . . , 42).

5.3 Reduction to autonomous polynomially homoge-
neous in the derivatives form

In this Section, we consider a general nonlinear system of first order par-
tial differential equations involving the derivatives of the unknown vari-
ables in polynomial (of degree greater than 1) form, and establish a theo-
rem giving necessary and sufficient conditions in order to map it to an au-
tonomous system which is polynomially homogeneous in the derivatives.

In some relevant situations, e.g., Monge–Ampère systems, the target
system results to be quasilinear, but there are cases where the system we
obtain is polynomially homogeneous in the derivatives but not quasilinear
(see Example 5.1.1). This means that the conditions of the theorem are only
necessary for the reduction of a nonlinear first order system to autonomous
and homogeneous quasilinear form [31].

The main difference of the theorem here presented with the similar one
proved in [65] (concerned with the transformation of a general first order
quasilinear system of partial differential equations into a first order quasi-
linear homogeneous and autonomous system) consists in the possibility of
admitting now an invertible point transformation like

z = Z(x,u), w = W(x,u), (5.63)

i.e., a mapping where the new independent variables z are allowed to de-
pend also on the old dependent ones. In the next Section, a theorem giving
necessary and sufficient conditions for the existence of an invertible map-
ping linking a nonlinear system of first order partial differential equations
which is polynomial in the derivatives to an autonomous system polyno-
mially homogeneous in the derivatives is proved.

5.3.1 Necessary and sufficient conditions

Let us consider a general system of first order partial differential equa-
tions

∆
(
x,u,u(1)

)
= 0, (5.64)

where x ∈ Rn, u ∈ Rm and u(1) ∈ Rmn are the independent variables, the
dependent variables, and the first order partial derivatives, respectively. In
particular, in the following we consider systems (5.64) composed by equa-
tions which are polynomial in the derivatives, with coefficients depending



68 Transformations of nonlinear first order systems

at most on x and u, i.e., systems made by equations of the form

Ns∑
|α|,|j|=1

Asαj(x,u)

|α|∏
k=1

∂uαk
∂xjk

+Bs(x,u) = 0, s = 1, . . . ,m, (5.65)

where α is the multi–index (α1, . . . , αr), j the multi–index (j1, . . . , jr), αk =
1, . . . ,m, jk = 1, . . . , n, Ns are integers, and Asαj(x,u), Bs(x,u) smooth
functions of their arguments.

The aim is to determine necessary and sufficient conditions for the con-
struction of an invertible point transformation

z = Z (x,u) , w = W (x,u) , (5.66)

mapping system (5.65) into an equivalent autonomous one which is homo-
geneous polynomial in the derivatives w(1), i.e., made by equations of the
form ∑

|α|,|j|=Ns

Ãsαj(w)

Ns∏
k=1

∂wαk
∂zjk

= 0, s = 1, . . . ,m, (5.67)

for some integers N s; of course, it may occur that the target system turns
out to be linear in the derivatives, i.e., N s = 1 (s = 1, . . . ,m), whereupon
we have an autonomous and homogeneous quasilinear system.

The following lemma guarantees that an invertible point transformation
like (5.66) preserves the polynomial structure in the derivatives.

Lemma 5.3.1. Given a first order system of partial differential equations like (5.65)
which is polynomial in the derivatives, then an invertible point transformation like
(5.66) produces a first order system which is still polynomial in the derivatives.

Proof. Straightforward, by using the chain rule.

Theorem 5.3.1. The nonlinear first order system of partial differential equations
polynomial in the derivatives

Ns∑
|α|,|j|=1

Asαj(x,u)

|α|∏
k=1

∂uαk
∂xjk

+Bs(x,u) = 0, s = 1, . . . ,m, (5.68)

is mapped by an invertible point transformation, say

z = Z(x,u), w = W(x,u), (5.69)

to the equivalent nonlinear first order autonomous system having homogeneous
polynomial form, say

∑
|α|,|j|=Ns

Ãsαj(w)

Ns∏
k=1

∂wαk
∂zjk

= 0, s = 1, . . . ,m, (5.70)

for some integers N s, if and only if there exists an (n+ 1)–dimensional subalgebra
of the Lie algebra of point symmetries, admitted by system (5.68), spanned by the
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vector fields

Ξi =
n∑
i=1

ξji (x,u)
∂

∂xi
+

m∑
α=1

ηαi (x,u)
∂

∂uα
, i = 1, . . . , n+ 1, (5.71)

such that

[Ξi,Ξj ] = 0, i = 1, . . . , n− 1, i < j ≤ n,
[Ξi,Ξn+1] = Ξi, i = 1, . . . , n,

(5.72)

where the Abelian subalgebra spanned by Ξ1, . . . ,Ξn generates a distribution of
rank n. Moreover, the variables w, which by construction are invariants of Ξ1, . . .,
Ξn, have to be invariant with respect to Ξn+1 too.

Proof. Suppose the conditions of Theorem 5.3.1 are satisfied, and so the sys-
tem (5.68) admits an (n+ 1)–dimensional algebra as subalgebra of the alge-
bra of its Lie point symmetries generating a distribution of rank (n+ 1) and
verifying the structure conditions (5.72). Let us introduce a set of canonical
variables for the vector field Ξ1, say

y1
i (i = 1, . . . , n), v1

α (α = 1, . . . ,m), (5.73)

such that
Ξ1y

1
1 = 1, Ξ1y

1
i1 = 0, Ξ1v

1
α = 0 (5.74)

(i1 = 2, . . . , n); as a consequence, Ξ1 takes the form

Ξ1 =
∂

∂y1
1

, (5.75)

i.e., it corresponds to a translation in the variable y1
1 .

Since [Ξ1,Ξ2] = 0, it is

Ξ1(Ξ2y
1
i ) = Ξ2(Ξ1y

1
i ) = 0, Ξ1(Ξ2v

1
α) = Ξ2(Ξ1v

1
α) = 0 (5.76)

(i = 1, . . . , n; α = 1, . . . ,m). Thus, the infinitesimals of Ξ2, represented in
terms of the canonical variables of Ξ1, will depend upon the invariants of
Ξ1 only, i.e., Ξ2 writes as

Ξ2 =

n∑
i=1

Θ2
i (y

1
j1 , v

1
β)

∂

∂y1
i

+
m∑
α=1

Λ2
α(y1

j1 , v
1
β)

∂

∂v1
α

(5.77)

(j1 = 2, . . . , n; β = 1, . . . ,m).
If Θ2

1 6= 0 we need to replace y1
1 with

y1
1 + ϕ1

1(y1
j1 , v

1
β), (5.78)

where the function ϕ1
1 satisfies

Θ2
1(y1

j1 , v
1
β) +

n∑
i1=2

Θ2
i1(y1

j1 , v
1
β)
∂ϕ1

1

∂y1
i1

+
m∑
α=1

Λ2
α(y1

j1 , v
1
β)
∂ϕ1

1

∂v1
α

= 0. (5.79)
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That enables us to write Ξ1 and Ξ2 as follows:

Ξ1 =
∂

∂y1
1

, Ξ2 =
n∑

i1=2

Θ2
i1(y1

j1 , v
1
β)

∂

∂y1
i1

+
m∑
α=1

Λ2
α(y1

j1 , v
1
β)

∂

∂v1
α

, (5.80)

where j1 = 2, . . . , n.
Introducing the canonical variables

y2
1 = y1

1, y2
2, y2

i2 (i2 = 3, . . . , n), v2
α (α = 1, . . . ,m), (5.81)

such that
Ξ2y

2
2 = 1, Ξ2y

2
i2 = 0, Ξ2v

2
α = 0 (5.82)

(i1 = 2, . . . , n), it is obtained

Ξ2 =
∂

∂y2
2

. (5.83)

Continuing inductively for k = 2, . . . , n− 1, since Ξk+1 commutes with Ξ1,
. . ., Ξk, in terms of the canonical variables

yki (i = 1, . . . , n), vkα (α = 1, . . . ,m), (5.84)

we have

Ξ1 =
∂

∂yk1
, Ξ2 =

∂

∂yk2
, . . . . . . , Ξk =

∂

∂ykk
,

Ξk+1 =
n∑
i=1

Θk+1
i (ykjk , v

k
β)

∂

∂yki
+

m∑
α=1

Λk+1
α (ykjk , v

k
β)

∂

∂vkα
,

(5.85)

where jk = k+ 1, . . . , n. If Θk+1
` 6= 0, for ` = 1, . . . , k, we need to replace the

variable yk` with
yk` + ϕk` (y

k
jk
, vkβ), (5.86)

where the function ϕk` satisfies

Θk+1
` (ykjk , v

k
β)+

n∑
ik=k+1

Θk+1
ik

(ykjk , v
k
β)
∂ϕk`
∂y1

ik

+
m∑
α=1

Λk+1
α (ykjk , v

k
β)
∂ϕk`
∂vkα

= 0, (5.87)

so that Ξk+1 writes as

Ξk+1 =

n∑
ik=k+1

Θk+1
ik

(ykjk , v
k
β)

∂

∂ykik
+

m∑
α=1

Λk+1
α (ykjk , v

k
β)

∂

∂vkα
; (5.88)

hence, we may construct the canonical variables

yk+1
1 = yk1 , . . . , y

k+1
k = ykk , yk+1

ik
(ik = k+1, . . . , n), vk+1

α (α = 1, . . . ,m),
(5.89)

related to the operator Ξk+1, such that the latter writes as

Ξk+1 =
∂

∂yk+1
k+1

. (5.90)



5.4. Applications 71

The complete application of the described algorithm enables us to write
each operator Ξi in the form

Ξi =
∂

∂zi
, i = 1, . . . , n, (5.91)

and the new independent and dependent variables are zi = yni (i = 1, . . . , n),
wα = vnα (α = 1, . . . ,m), respectively.

Therefore, what we have obtained is a variable transformation like (5.69)
allowing to write the system (5.68) in autonomous form.

Finally, since [Ξi,Ξn+1] = Ξi (i = 1, . . . , n), it is

Ξi(Ξn+1zj) = Ξn+1(Ξizj) + Ξizj = δij ,

Ξi(Ξn+1wα) = Ξn+1(Ξiwα) + Ξiwα = 0,
(5.92)

where δij is the Kronecker symbol; these relations, together with the hy-
pothesis that the variables wα (α = 1, . . . ,m) are invariant with respect to
Ξn+1, allow the vector field Ξn+1 to gain the representation

Ξn+1 =
n∑
j=1

zj
∂

∂zj
. (5.93)

As a consequence, since the resulting system, written in the variables z and
w, is autonomous and polynomial in the derivatives, and is invariant with
respect to a uniform scaling of all independent variables, then it necessarily
must be polynomially homogeneous in the derivatives, i.e., it has the form
(5.70).

The condition that the n–dimensional Abelian Lie subalgebra of the
symmetries generate a distribution of rank n ensures that we may construct
the complete set of the new independent variables z.

Conversely, if the nonautonomous and/or nonhomogeneous system
(5.68) can be mapped by the invertible point transformation (5.69) to the
autonomous system polynomially homogeneous in the derivatives (5.70),

then, since the latter admits the n vector fields
∂

∂zi
, spanning an n–dimen-

sional Abelian Lie algebra, and the vector field
n∑
j=1

zj
∂

∂zj
, then it follows

that also the system (5.68) must admit (n+1) Lie point symmetries with the
requested algebraic structure.

5.4 Applications

In this Section, we provide some examples of nonlinear first order sys-
tems polynomial in the derivatives whose Lie symmetries satisfy the condi-
tions of Theorem 5.3.1, and prove that they can be transformed under suit-
able conditions to autonomous first order systems having homogeneous
polynomial form; the systems that will be considered are of Monge–Ampère
type, and, remarkably, they are reduced to quasilinear (or linear) form.

In particular, we are concerned with the nonlinear first order systems
of Monge–Ampère equations for the unknowns uα(xi) (α = 1, . . . ,m; i =
1, . . . , n). These systems have been characterized by Boillat in 1997 [13] by
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looking for the nonlinear first order systems possessing, as the quasilinear
systems, the property of the linearity of the Cauchy problem. These systems
are also completely exceptional [11, 52], and are made by equations which
are expressed as linear combinations (with coefficients depending at most
on the independent and the dependent variables) of all minors extracted
from the gradient matrix of uα = uα(xi).

Hereafter, to shorten the formulas, we denote with uα,i the first order
partial derivative of uα(xi) with respect to xi, and with wα,i the first order
partial derivative of wα(zi) with respect to zi; moreover, we denote with
fi;α the first order partial derivative of the function fi with respect to uα (or
wα). In the following we limit ourselves to consider the coefficients of the
Monge–Ampère systems at most functions of the field variables.

5.4.1 Case m = n = 2

Let us consider the nonlinear first order system of Monge–Ampère
made by the equations

κi0 (u1,1u2,2 − u1,2u2,1) + κi1u1,1 + κi2u1,2 + κi3u2,1 + κi4u2,2 + κi5 = 0 (5.94)

(i = 1, 2), with u1(x1, x2), u2(x1, x2) scalar functions, and κij (u1, u2) (i =
1, 2; j = 0, . . . , 5) arbitrary smooth functions of the indicated arguments.

The substitutions

u1 → u1 + α11x1 + α12x2, u2 → u2 + α21x1 + α22x2, (5.95)

where αij are arbitrary constants, produce a system with κi5 = 0 (i = 1, 2)
provided that

κi0(α11α22 − α12α21) + κi1α11 + κi2α12 + κi3α21 + κi4α22 + κi5 = 0 (5.96)

(i = 1, 2). Conditions (5.96) provide two constraints on the functional form
of the coefficients so that not all systems can be written in a form where
κi5 = 0; however, if the coefficients κij are constant, due to the arbitrariness
of the constants αij , then (5.96) can always be satisfied whatever the values
of the coefficients are.

It is easily recognized that system (5.94), now taken with κi5 = 0, admits
the Lie point symmetries spanned by the operators

Ξ1 =
∂

∂x1
, Ξ2 =

∂

∂x2
, Ξ3 = (x1 − f1)

∂

∂x1
+ (x2 − f2)

∂

∂x2
, (5.97)

where fi(u1, u2) (i = 1, 2) are arbitrary smooth functions of their arguments,
provided that

κi0 + κi1f2;2 − κi2f1;2 − κi3f2;1 + κi4f1;1 = 0, i = 1, 2. (5.98)

The constraints (5.98), once we assign the 10 functions kij(u1, u2) (i = 1, 2,
j = 0, . . . , 4), are the differential equations providing us the functional form
of f1(u1, u2) and f2(u1, u2).
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In the case where all the coefficients κij are constant, then the functions
f1 and f2 are forced to be linear, i.e.,

f1 = β11u1 + β12u2, f2 = β21u1 + β22u2, (5.99)

βij being constants whose value is determined by the coefficients κij .
Since

[Ξ1,Ξ2] = 0, [Ξ1,Ξ3] = Ξ1, [Ξ2,Ξ3] = Ξ2, (5.100)

we introduce the new variables

z1 = x1 − f1, z2 = x2 − f2, w1 = u1, w2 = u2, (5.101)

and the generators of the point symmetries write as

Ξ1 =
∂

∂z1
, Ξ2 =

∂

∂z2
, Ξ3 = z1

∂

∂z1
+ z2

∂

∂z2
. (5.102)

In terms of the new variables (5.101), the nonlinear system (5.94) becomes

κi1w1,1 + κi2w1,2 + κi3w2,1 + κi4w2,2 = 0, (5.103)

i.e., reads as an autonomous and homogeneous quasilinear system. This
system is linear if all the coefficients κij are constant; nevertheless, since it is
a 2×2 homogeneous and autonomous quasilinear system, it can be written
in linear form by means of the hodograph transformation also when the
coefficients κij depend on u1 and u2.

In conclusion, all Monge–Ampère systems with m = n = 2 can be re-
duced to a linear system when the coefficients κij are constant; on the con-
trary, when the coefficients depend upon u1 and u2 the reduction to the
linear form is possible provided that the constraints (5.96) are satisfied.

5.4.2 Case m = 2, n = 3

By considering the gradient matrix of uα(xi) (α = 1, 2; i = 1, . . . , 3)

H =

(
u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

)
(5.104)

and its extracted minors of order 2,

H1 =

∣∣∣∣ u1,1 u1,2

u2,1 u2,2

∣∣∣∣ , H2 =

∣∣∣∣ u1,1 u1,3

u2,1 u2,3

∣∣∣∣ , H3 =

∣∣∣∣ u1,2 u1,3

u2,2 u2,3

∣∣∣∣ , (5.105)

the nonlinear first order system of Monge–Ampère is made by equations
like

κi1H
1 + κi2H

2 + κi3H
3

+ κi4u1,1 + κi5u1,2 + κi6u1,3 + κi7u2,1 + κi8u2,2 + κi9u2,3 + κi10 = 0,
(5.106)

with κij (uα) (i = 1, 2; j = 1, . . . , 10) arbitrary smooth functions of the indi-
cated arguments.
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The substitutions

u1 → u1 + α11x1 + α12x2 + α13x3,

u2 → u2 + α21x1 + α22x2 + α23x3,
(5.107)

where αij are arbitrary constants, produce a system with κi10 = 0 (i = 1, 2)
provided that

κi1(α11α22 − α12α21) + κi2(α11α23 − α13α21) + κi3(α12α23 − α13α22)

+ κi4α11 + κi5α12 + κi6α13 + κi7α21 + κi8α22 + κi9α23 + κi10 = 0
(5.108)

(i = 1, 2). Actually, conditions (5.108) can always be satisfied when the
coefficients κij are constant because of the arbitrariness of the constants αij .

The nonlinear system (5.106), now taken with κi10 = 0, admits the Lie
point symmetries spanned by the operators

Ξ1 =
∂

∂x1
, Ξ2 =

∂

∂x2
, Ξ3 =

∂

∂x3
,

Ξ4 = (x1 − f1)
∂

∂x1
+ (x2 − f2)

∂

∂x2
+ (x3 − f3)

∂

∂x3
,

(5.109)

where fi(u1, u2) (i = 1, . . . , 3) are arbitrary smooth functions of their argu-
ments, provided that

κi1 + κi4f2;2 − κi5f1;2 − κi7f2;1 + κi8f1;1 = 0,

κi2 + κi4f3;2 − κi6f1;2 − κi7f3;1 + κi9f1;1 = 0,

κi3 + κi5f3;2 − κi6f2;2 − κi8f3;1 + κi9f2;1 = 0.

(5.110)

The six conditions (5.110) cannot be fulfilled for an arbitrary choice of the
coefficients κij . In the simplest case, where the coefficients κij are constant,
they can be always satisfied and the functions fi must be linear:

f1 = β11u1 + β12u2, f2 = β21u1 + β22u2, f3 = β31u1 + β32u2, (5.111)

βij being arbitrary constants.
The Lie point symmetries (5.109) generate a 4–dimensional solvable Lie

algebra,

[Ξi,Ξj ] = 0, [Ξi,Ξ4] = Ξi, i, j = 1, . . . , 3, (5.112)

whereupon we may introduce the new variables

z1 = x1 − f1, z2 = x2 − f2, z3 = x3 − f3,
w1 = u1, w2 = u2,

(5.113)

and the generators of the point symmetries write as

Ξ1 =
∂

∂z1
, Ξ2 =

∂

∂z2
, Ξ3 =

∂

∂z3
, Ξ4 = z1

∂

∂z1
+z2

∂

∂z2
+z3

∂

∂z3
. (5.114)
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In terms of the new variables (5.113), the nonlinear system (5.106) reduces
to

κi4w1,1 + κi5w1,2 + κi6w1,3 + κi7w2,1 + κi8w2,2 + κi9w2,3 = 0, (5.115)

i.e., reads as an autonomous and homogeneous quasilinear system.

5.4.3 Case m = 3, n = 2

By considering the gradient matrix of uα(xi) (α = 1, . . . , 3; i = 1, 2)

H =

 u1,1 u1,2

u2,1 u2,2

u3,1 u3,2

 (5.116)

and its extracted minors of order 2,

H1 =

∣∣∣∣ u1,1 u1,2

u2,1 u2,2

∣∣∣∣ , H2 =

∣∣∣∣ u1,1 u1,2

u3,1 u3,2

∣∣∣∣ , H3 =

∣∣∣∣ u2,1 u2,2

u3,1 u3,2

∣∣∣∣ , (5.117)

the nonlinear first order system of Monge–Ampère is made by equations
like

κi1H
1 + κi2H

2 + κi3H
3

+ κi4u1,1 + κi5u1,2 + κi6u2,1 + κi7u2,2 + κi8u3,1 + κi9u3,2 + κi10 = 0,
(5.118)

with κij (uα) (i = 1, . . . , 3; j = 1, . . . , 10) arbitrary smooth functions of the
indicated arguments.

The substitutions

u1 → u1 + α11x1 + α12x2,

u2 → u2 + α21x1 + α22x2,

u3 → u3 + α31x1 + α32x2,

(5.119)

where αij are arbitrary constants, produce a system with κi10 = 0 (i =
1, . . . , 3) provided that

κi1(α11α22 − α12α21) + κi2(α11α32 − α12α31) + κi3(α21α32 − α22α31)

+ κi4α11 + κi5α12 + κi6α21 + κi7α22 + κi8α31 + κi9α32 + κi10 = 0.
(5.120)

Also in this case, conditions (5.120) can always be satisfied when the coeffi-
cients κij are constant because of the arbitrariness of the constants αij .

The nonlinear system (5.118), now taken with κi10 = 0, admits the Lie
point symmetries spanned by the operators

Ξ1 =
∂

∂x1
, Ξ2 =

∂

∂x2
, Ξ3 = (x1 − f1)

∂

∂x1
+ (x2 − f2)

∂

∂x2
, (5.121)
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where fi(u1, u2, u3) (i = 1, 2) are arbitrary smooth functions of their argu-
ments, provided that

κi1 + κi4f2;2 − κi5f1;2 − κi6f2;1 + κi7f1;1 = 0,

κi2 + κi4f2;3 − κi5f1;3 − κi8f2;1 + κi9f1;1 = 0,

κi3 + κi6f2;3 − κi7f1;3 − κi8f2;2 + κi9f1;2 = 0.

(5.122)

The six conditions (5.122) cannot be fulfilled for an arbitrary choice of the
coefficients κij . In the simplest case, where the coefficients κij are constant,
they can be always satisfied and the functions fi must be linear:

f1 = β11u1 + β12u2 + β13u3, f2 = β21u1 + β22u2 + β23u3, (5.123)

βij being arbitrary constants.
The Lie point symmetries (5.121) generate a 3–dimensional solvable Lie

algebra,
[Ξi,Ξj ] = 0, [Ξi,Ξ3] = Ξi, i, j = 1, 2, (5.124)

whereupon we may introduce the new variables

z1 = x1 − f1, z2 = x2 − f2,
w1 = u1, w2 = u2, w3 = u3,

(5.125)

and the generators of the point symmetries write as

Ξ1 =
∂

∂z1
, Ξ2 =

∂

∂z2
, Ξ4 = z1

∂

∂z1
+ z2

∂

∂z2
. (5.126)

In terms of the new variables (5.125), the nonlinear system (5.118) reduces
to

κi4w1,1 + κi5w1,2 + κi6w2,1 + κi7w2,2 + κi8w3,1 + κi9w3,2 = 0, (5.127)

i.e., reads as an autonomous and homogeneous quasilinear system.

5.4.4 Case m = n = 3

By considering the gradient matrix of uα(xi) (i = 1, . . . , 3; α = 1, . . . , 3)

H =

 u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3

 (5.128)

and its extracted minors of order 2,

H1 =

∣∣∣∣ u2,2 u2,3

u3,2 u3,3

∣∣∣∣ , H2 =

∣∣∣∣ u2,1 u2,3

u3,1 u3,3

∣∣∣∣ , H3 =

∣∣∣∣ u2,1 u2,2

u3,1 u3,2

∣∣∣∣ ,
H4 =

∣∣∣∣ u1,2 u1,3

u3,2 u3,3

∣∣∣∣ , H5 =

∣∣∣∣ u1,1 u1,3

u3,1 u3,3

∣∣∣∣ , H6 =

∣∣∣∣ u1,1 u1,2

u3,1 u3,2

∣∣∣∣ ,
H7 =

∣∣∣∣ u1,2 u1,3

u2,2 u2,3

∣∣∣∣ , H8 =

∣∣∣∣ u1,1 u1,3

u2,1 u2,3

∣∣∣∣ , H9 =

∣∣∣∣ u1,1 u1,2

u2,1 u2,2

∣∣∣∣ ,
(5.129)
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the nonlinear first order system of Monge–Ampère results composed by
equations like

κi0 det(H) + κi1H
1 + κi2H

2 + κi3H
3 + κi4H

4 + κi5H
5 + κi6H

6

+ κi7H
7 + κi8H

8 + κi9H
9 + κi10u1,1 + κi11u1,2 + κi12u1,3 + κi13u2,1

+ κi14u2,2 + κi15u2,3 + κi16u3,1 + κi17u3,2 + κi18u3,3 + κi19 = 0,

(5.130)

with κij (uα) (i = 1, . . . , 3; j = 0, . . . , 19; α = 1, . . . , 3) arbitrary smooth
functions of the indicated arguments.

Also in this case, the substitutions

u1 → u1 + α11x1 + α12x2 + α13x3,

u2 → u2 + α21x1 + α22x2 + α23x3,

u3 → u3 + α31x1 + α32x2 + α33x3,

(5.131)

where αij are arbitrary constants, allow us to obtain a system with κi19 = 0
provided that ui,j = αij is a solution of equations (5.130). This require-
ment implies some constraints on the coefficients κij in the general case; on
the contrary, no limitation to the values of the coefficients exists if they are
assumed to be constant.

The system (5.130), with κi19 = 0, admits the Lie point symmetries
spanned by the operators

Ξ1 =
∂

∂x1
, Ξ2 =

∂

∂x2
, Ξ3 =

∂

∂x3
,

Ξ4 = (x1 − f1)
∂

∂x1
+ (x2 − f2)

∂

∂x2
+ (x3 − f3)

∂

∂x3
,

(5.132)

where fi(u1, u2, u3) (i = 1, . . . , 3) are arbitrary smooth functions of their
arguments, provided that

κi0 − (f2;2f3;3 − f2;3f3;2)κi10 − (f1;3f3;2 − f1;2f3;3)κi11

− (f1;2f2;3 − f1;3f2;2)κi12 − (f2;3f3;1 − f2;1f3;3)κi13

− (f1;1f3;3 − f1;3f3;1)κi14 − (f1;3f2;1 − f1;1f2;3)κi15

− (f2;1f3;2 − f2;2f3;1)κi16 − (f1;2f3;1 − f1;1f3;2)κi17

− (f1;1f2;2 − f1;2f2;1)κi18 = 0,

κi1 + κi14f3;3 − κi15f2;3 − κi17f3;2 + κi18f2;2 = 0,

κi2 + κi13f3;3 − κi15f1;3 − κi16f3;2 + κi18f1;2 = 0,

κi3 + κi13f2;3 − κi14f1;3 − κi16f2;2 + κi17f1;2 = 0,

κi4 + κi11f3;3 − κi12f2;3 − κi17f3;1 + κi18f2;1 = 0,

κi5 + κi10f3;3 − κi12f1;3 − κi16f3;1 + κi18f1;1 = 0,

κi6 + κi10f2;3 − κi11f1;3 − κi16f2;1 + κi17f1;1 = 0,

κi7 + κi11f3;2 − κi12f2;2 − κi14f3;1 + κi15f2;1 = 0,

κi8 + κi10f3;2 − κi12f1;2 − κi13f3;1 + κi15f1;1 = 0,

κi9 + κi10f2;2 − κi11f1;2 − κi13f2;1 + κi14f1;1 = 0.

(5.133)
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The vector fields (5.132) span a 4–dimensional solvable Lie algebra,

[Ξi,Ξj ] = 0, [Ξi,Ξ4] = Ξi, i, j = 1, . . . , 3, (5.134)

whereupon we may introduce the new variables

z1 = x1 − f1, z2 = x2 − f2, z3 = x3 − f3,
w1 = u1, w2 = u2, w3 = u3,

(5.135)

and the generators of the point symmetries write as

Ξ1 =
∂

∂z1
, Ξ2 =

∂

∂z2
, Ξ3 =

∂

∂z3
,

Ξ4 = z1
∂

∂z1
+ z2

∂

∂z2
+ z3

∂

∂z3
.

(5.136)

In terms of the new variables (5.135), Eqs. (5.130) write as

κi10w1,1 + κi11w1,2 + κi12w1,3 + κi13w2,1 + κi14w2,2 + κi15w2,3

+ κi16w3,1 + κi17w3,2 + κi18w3,3 = 0,
(5.137)

i.e., they are in autonomous and homogeneous quasilinear (linear, if the
coefficients are constant) form.

Conditions (5.133) play severe restrictions to the expression of the co-
efficients κij . When these coefficients are assumed to be constant, we are
forced to take

f1 = β11u1 + β12u2 + β13u3,

f2 = β21u1 + β22u2 + β23u3,

f3 = β31u1 + β32u2 + β33u3,

(5.138)

where βij are arbitrary constants; also in such simple case, the reduction to
linear form is not always possible due to (5.133).

5.4.5 Case m and n arbitrary

It is easily recognized that, a general Monge–Ampère system with m
dependent variables and n independent variables, provided that some suit-
able conditions on the coefficients (at most depending on the field variables)
are satisfied, is invariant with respect to the Lie groups generated by the
vector fields

Ξi =
∂

∂xi
, i = 1, . . . , n,

Ξn+1 =
n∑
i=1

(xi − fi(uα))
∂

∂xi
,

(5.139)

where fi(uα) are smooth functions of (u1, . . . , um) which have to be linear
in their arguments when the coefficients of the Monge–Ampère system are
constant.

As one expects, for m > 3 or n > 3, we have a situation similar to the
casem = n = 3, i.e., even in the case of constant coefficients, not all Monge–
Ampère systems can be reduced to (quasi) linear form.
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5.5 Conclusions

In the first part of this Chapter, a theorem giving only necessary condi-
tions for the transformation of a nonlinear first order system of partial dif-
ferential equations to autonomous and homogeneous quasilinear form has
been given. The reduction to quasilinear form is performed by constructing
the canonical variables associated to the Lie point symmetries admitted by
the nonlinear source system. Some examples concerned with the first order
systems related to second order Monge–Ampère equations in (1+1), (2+1)
and (3 + 1) dimensions where the procedure works are also discussed. As
physical example, it has been shown that the one–dimensional Euler equa-
tions for isentropic fluids can be equivalent to a nonlinear second order
Monge–Ampère equation with a special constitutive law and, under suit-
able conditions, can be mapped into autonomous and homogeneous form.
Moreover, an example of a first order system polynomial in the derivatives
that can be reduced to a system polynomially homogeneous of degree 2 in
the derivatives (equivalent to a second order partial differential equation
for a surface in R3 such that its Gaussian curvature is proportional to the
square of its mean curvature) is provided.

In the second part of this Chapter, a theorem giving necessary and suf-
ficient conditions for transforming a nonlinear first order system of partial
differential equations involving the derivatives in polynomial form to an
equivalent autonomous system polynomially homogeneous in the deriva-
tives has been proved. The theorem is based on the Lie point symmetries
admitted by the nonlinear system, and the proof is constructive, in the sense
that it leads to the algorithmic construction of the invertible mapping per-
forming the task.

The theorem is applied to a class of nonlinear first order systems belong-
ing to the family of Monge–Ampère systems that have been characterized
by Boillat in 1997 [13]. These systems share with the quasilinear systems the
property of the linearity of the Cauchy problem. They are also completely
exceptional [11, 52], and are made by equations which are expressed as lin-
ear combinations (with coefficients depending at most on the independent
and the dependent variables) of all minors extracted from the gradient ma-
trix of uα = uα(xi) (α = 1, . . . ,m; i = 1, . . . , n). We considered explicitly
either the case of constant coefficients or the case of coefficients depending
on the field variables, for m = 2, 3 and n = 2, 3. If m = 2 and n = 2, 3,
or n = 2 and m = 2, 3, and the coefficients are assumed to be constant,
we proved that the Monge–Ampère systems can always be transformed to
linear form.

Nevertheless, for arbitrarym and n, Monge–Ampère systems, provided
that the coefficients entering their equations satisfy some constraints, can
be mapped to first order quasilinear autonomous and homogeneous sys-
tems. This, in some sense, casts new light on the fact, underlined by Boillat
[13], that Monge–Ampère systems, because of the linearity of the Cauchy
problem, are the closest to quasilinear systems, which are Monge systems.
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6 Decoupling of quasilinear
first order systems

IN this Chapter, we deal with the decoupling problem of general quasi-
linear first order systems in two independent variables. After introduc-

ing the problem, we start by considering hyperbolic quasilinear first or-
der systems in two and three dependent variables; these systems can be
in principle nonautonomous and/or nonhomogeneous. By means of a di-
rect approach, we determine the conditions guaranteeing the decoupling,
and write these conditions in terms of the eigenvalues and eigenvectors of
the coefficient matrix. Then, we discuss general autonomous and homoge-
neous quasilinear first order systems (either hyperbolic or not), and prove
the necessary and sufficient conditions for the decoupling. The results are
also extended to the case of nonhomogeneous and/or nonautonomous sys-
tems. The proofs of the theorems presented in this Chapter are mainly
based on some quantities, built with the eigenvalues and the eigenvectors
of the coefficient matrix, as well as (if any) with the source terms, which are
invariant under an invertible change of variables. Some examples of physi-
cal interest where the procedure can be applied are also given. The original
results here presented are contained in [33, 34].

6.1 The problem

Let us consider first order systems of partial differential equations in the
form of balance laws [15, 20], that in one space dimension read as

∂F0(u)

∂t
+
∂F1(u)

∂x
= g(u), (6.1)

where u ∈ Rn denotes the unknown vector field, F0(u) ∈ Rn collects the
components of the densities of some physical quantities, F1(u) ∈ Rn the
components of the corresponding fluxes, and g(u) ∈ Rn the production
terms; when g(u) ≡ 0, we have a system of conservation laws.

Systems like (6.1) fall in the more general class of nonhomogeneous
quasilinear first order systems of partial differential equations,

A0(u)
∂u

∂t
+A1(u)

∂u

∂x
= g(u), (6.2)

where A0(u) and A1(u) are n × n matrices (the gradient matrices of F0(u)
and F1(u), respectively, in the case of conservative systems). As shown
in Chapter 3, special problems of physical interest may require to consider
nonautonomous and/or nonhomogeneous quasilinear systems of the form

A0(t, x,u)
∂u

∂t
+A1(t, x,u)

∂u

∂x
= g(t, x,u). (6.3)



82 Decoupling of quasilinear first order systems

The analytical, as well as numerical, treatment of quasilinear systems
of conservation laws is in general a difficult task. In the case of hyperbolic
systems, the generalized eigenvalues of the matrix pair {A0, A1}, giving
the wave speeds, depend on u, whereupon the shape of the various com-
ponents in the solution will vary in time: rarefaction waves will decay, and
compression waves will become steeper, possibly leading to shock forma-
tion in a finite time [15, 20]. Since also the eigenvectors, determining the
approximate change of field variables across a wave, depend on u, non-
trivial interactions between different waves will occur; the strength of the
interacting waves may change, and new waves of different families can be
created, as a result of the interaction.

For a strictly hyperbolic system of conservation laws we have n families
of waves, each corresponding to an eigenvalue of the system. The non-
linearity of wavespeeds leads to the formation of shocks, so that solutions
must be understood in the weak sense. The existence and stability of global
weak solutions for Cauchy data with small total variation was established
by Glimm [30]. For systems of more than two equations nonlocal resonant
interaction effects between different families of waves are observed, lead-
ing to a variety of new phenomena [57] such as blowup of solutions [41],
and delay in the onset of shocks [58]. The resonance determines the occur-
rence of solutions exhibiting a strong nonlinear instability in the form of
catastrophic blowup of solutions [41, 49]. In fact, there are systems where
Cauchy data with arbitrarily small oscillation can grow arbitrarily large in
a finite time [95, 96, 98].

In dealing with quasilinear systems, it may be interesting to look for
the conditions (if any) leading to their possible decoupling into smaller
non–interacting subsystems (full decoupling), or their reduction to a set
of smaller subsystems that can be solved separately in hierarchy (partial
decoupling).

For homogeneous and autonomous first order quasilinear systems of
partial differential equations in two independent variables, the decoupling
problem can be formulated as follows [9, 10].

Problem 6.1.1. When can a system like

∂u`
∂t

=
n∑
j=1

A`j(u1, . . . , un)
∂uj
∂x

, ` = 1, . . . , n, (6.4)

be locally decoupled in some coordinates v1(u), . . . , vn(u) into k non–interacting
subsystems, say

∂vmj+i

∂t
=

nj∑
`=1

Ãmj+i,mj+`(vmj+1, . . . , vmj+nj )
∂vmj+`

∂x
, (6.5)

of some orders n1, . . . , nk with n1 + . . . + nk = n, where j = 1, . . . , k, i =
1, . . . , nj , and mj = n1 + . . .+ nj?

A first result has been obtained by Nijenhuis [63] in the case of a strictly
hyperbolic system; the necessary and sufficient conditions for the complete
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decoupling of system (6.4) into n non–interacting one–dimensional subsys-
tems require the vanishing of the corresponding Nijenhuis tensor

Njik = Aαi
∂Ajk
∂uα

−Aαk
∂Aji
∂uα

+Ajα
∂Aαi
∂uk

−Ajα
∂Aαk
∂ui

. (6.6)

The decoupling problem has been considered by Bogoyavlenskij [9, 10],
who provided necessary and sufficient conditions by using Nijenhuis [63]
and Haantjes [36] tensors. More in detail, to reduce system (6.4) into block–
diagonal form with k mutually interacting blocks of dimensions ni × nj
[9, 10] it is necessary and sufficient that in the tangent spaces Tx(Rn) there
exist k smooth distributions L1x, . . . , Lkx of dimensions n1, . . . , nk such that
L1x ⊕ · · · ⊕ Lkx = Tx(Rn) and the conditions

A(Lix) ⊂ Lix, N(Lix, Lix) ⊂ Lix, N(Lix, Ljx) ⊂ Lix + Ljx, (6.7)

hold, provided that the eigenvalues of the operator A in any two different
subspaces Lix and Ljx are different almost everywhere for x ∈ Rn (i 6=
j; i, j ∈ {1, . . . , k}). In the more restrictive case of the decoupling into k

non–interacting blocks, the different blocks Ãmj+i,mj+` depend on different
variables; hence, for the generic case the eigenvalues corresponding to any
two blocks Ãmj+i,mj+` do not coincide with each other almost everywhere
for x ∈ Rn (while inside a given block some eigenvalues can coincide). In
this case, the necessary and sufficient conditions for the reducibility of the
systems (6.4) into k non–interacting subsystems have the form

A(Lix) ⊂ Lix, N(Lix, Lix) ⊂ Lix, N(Lix, Ljx) = 0. (6.8)

Within this theoretical framework, a couple of recent papers by Tunitsky
[90, 91], who established necessary and sufficient conditions for transform-
ing quasilinear first order systems into block triangular systems by using a
geometric formalism for such equations, based on Nijenhuis and Haantjes
tensors, are worth of being quoted.

In this Chapter, we shall consider either autonomous and homogeneous
first order quasilinear systems like

∂u

∂t
+A(u)

∂u

∂x
= 0, (6.9)

or general nonhomogeneous and/or nonautonomous ones, say

∂u

∂t
+A(t, x,u)

∂u

∂x
= g(t, x,u) (6.10)

(possibly coming from systems in conservative form), and obtain the neces-
sary and sufficient conditions allowing for the partial decoupling in two or
more subsystems, as we shall precise below. When such a partial decoupling
is possible, we may solve the various subsystems separately in hierarchy.
Also, we shall prove how to extend the conditions to be satisfied in order to
characterize the systems that can be fully decoupled into non–interacting
subsystems. The conditions we shall discuss later involve, as one expects,
just the properties of the eigenvalues, the eigenvectors (together with the
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generalized eigenvectors, if needed) of the coefficient matrix; in particu-
lar, the conditions for the full decoupling of a hyperbolic system in k non–
interacting subsystems require the vanishing both of the change of charac-
teristic speeds of a subsystem across a wave of the other subsystems, and
of the interaction coefficients between waves of different subsystems. Even
if the computation of eigenvalues and eigenvectors of the coefficient ma-
trix may be hard (especially for large matrices), the conditions we derived
have a simple interpretation, as we shall discuss later. Moreover, when the
required decoupling conditions are satisfied, we have also the differential
constraints whose integration provides the variable transformation leading
to the (partially or fully) decoupled system.

6.2 Direct approach for the decoupling of hyperbolic
systems

Let us consider a general first order quasilinear hyperbolic (in the t–
direction) system of partial differential equations

∂ui
∂t

+
n∑
j=1

Aij(t, x,u)
∂uj
∂x

= gi(t, x,u), (6.11)

or, in compact form,

∂u

∂t
+A(t, x,u)

∂u

∂x
= g(t, x,u), (6.12)

where u ≡ (u1, . . . , un)T , A being an n × n real matrix whose entries Aij
are smooth functions depending at most on the independent and depen-
dent variables, and g ∈ Rn being the source term with components smooth
functions of t, x and u. Because of the hyperbolicity, the matrix A has real
eigenvalues, and a corresponding set of eigenvectors spanning Rn.

By denoting with x ≡ (t, x) the original independent variables, and
introducing new independent variables X ≡ (T,X) depending on t and x,
and new dependent variables U ≡ (U1, . . . , Un)T as functions of t, x and u,
through a locally invertible map like

X = Z(x), u = h(x,U), (6.13)

or, equivalently,
x = z(X), U = H(x,u), (6.14)

the quasilinear form of (6.12) is preserved.

Remark 6.2.1. The previous result is coherent with the equivalence transforma-
tions admitted by system (6.12) [69]. In fact, their projection on the space (t, x,u)
is generated by the following vector fields:

Ξ1 = f1(t, x)
∂

∂t
, Ξ2 = f2(t, x)

∂

∂x
,

Ξi+2 = fi+2(t, x,u)
∂

∂ui
, i = 1, . . . , n,

(6.15)
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where fi (i = 1, . . . , n+2) are arbitrary functions of the indicated arguments. The
finite transformations corresponding to (6.15) provide a map like (6.13) preserving
the differential structure of (6.12).

By defining the (invertible) matrices

∇Uh =


∂h1
∂U1

. . . ∂h1
∂Un

...
...

...
∂hn
∂U1

. . . ∂hn
∂Un

 , J =

[
∂Z1
∂t

∂Z1
∂x

∂Z2
∂t

∂Z2
∂x

]
, (6.16)

the system (6.12) writes as

(J11I + J12A) (∇Uh)
∂U

∂T
+ (J21I + J22A) (∇Uh)

∂U

∂X
=

=

(
g − ∂h

∂t
−A∂h

∂x

)
,

(6.17)

whereupon, if det (J11I + J12A) 6= 0, we obtain

∂U

∂T
+ Ã(T,X,U)

∂U

∂X
= G(T,X,U), (6.18)

where the entries of matrix Ã and the components of G now depend on T ,
X and U.

The matrix Ã and the vector G involved in (6.18) have the form

Ã = (∇Uh)−1 (J11I + J12A)−1 (J21I + J22A) (∇Uh),

G = (∇Uh)−1 (J11I + J12A)−1

(
g − ∂h

∂t
−A∂h

∂x

)
.

(6.19)

Let l(i) ≡
(
l
(i)
1 , . . . , l

(i)
n

)
and r(i) ≡

(
r

(i)
1 , . . . , r

(i)
n

)T
be the left and right

eigenvectors of matrix A corresponding to the eigenvalue λi, respectively;
then, L(i) = l(i)(∇Uh) and R(i) = (∇Uh)−1r(i) are the left and right eigen-

vectors of Ã corresponding to the eigenvalue Λi =
J21 + J22λi
J11 + J12λi

, respectively.

In the next two Sections, we shall consider the cases n = 2 and n =
3, and derive the conditions on the source system and the transformation
allowing us to obtain a system like (6.18) that results partially (or fully)
decoupled in some subsystems.

It is worth of being remarked that the introduction of a transformation
of the independent variables as well as the possibility that the new field
variables depend not only on the old dependent variables but also on the
independent variables does not have effects on the decoupling process, but
may be useful if we want to get a somehow decoupled system which is
autonomous [22, 26, 66] or homogeneous and autonomous [19, 65]: in these
last cases the Lie point symmetries admitted by the source system play a
central role [65, 66].
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6.3 Direct approach for the decoupling of hyperbolic
systems in two dependent variables

With the aim of identifying the 2 × 2 systems that can be decoupled by
means of an invertible point transformation like (6.13) (or (6.14)), two main
cases can be distinguished:

(I) Partial Decoupling:

Ã12 =
∂Ã11

∂U2
=
∂G1

∂U2
= 0; (6.20)

(II) Full Decoupling:

Ã12 = Ã21 =
∂Ã11

∂U2
=
∂Ã22

∂U1
=
∂G1

∂U2
=
∂G2

∂U1
= 0. (6.21)

In addition, we may be interested to get a (partially or fully) decoupled
system which is autonomous and/or homogeneous.

When a partially decoupled system is recovered, the first equation can
be solved for U1; inserting this solution in the second equation, we get an
equation for U2. When a fully decoupled system is recovered, the two re-
sulting equations can be solved independently from each other.

(I) Partial decoupling.
Let us require that Ã12 is vanishing and that Ã11 and G1 are indepen-
dent of U2, thus obtaining some constraints on the structure of (6.12).

From Ã12 = 0, it follows that

0 = R
(2)
1 =

∂h2

∂U2
r

(2)
1 −

∂h1

∂U2
r

(2)
2 , (6.22)

whereupon, considering the inverse transformation of (6.13) as U =
H(x,u), it follows

(∇uH1) · r(2) = 0; (6.23)

condition (6.23) means that we may write

∇uH1 = α(t, x,u) l(1), (6.24)

with a suitable function α of the indicated arguments.

Since
Ã11 = Λ1 =

J21 + J22λ1

J11 + J12λ1
, (6.25)

the condition
∂Ã11

∂U2
= 0 (6.26)

is equivalent to

(∇uλ1) · ∂h

∂U2
= 0. (6.27)
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Furthermore, condition (6.22) means that the vectors
∂h

∂U2
and r(2) are

parallel, so that the relation (6.27) can be rewritten as

(∇uλ1) · r(2) = 0, (6.28)

which is a structure condition on the original system.

Moreover, by requiring G1 to be independent of U2, after some alge-
bra, we get(

∇u ((∇uH1) · g) +
∂(∇uH1)

∂t
+ λ1

∂(∇uH1)

∂x

)
· r(2) = 0. (6.29)

Therefore, the first equation can be decoupled from the second one by
introducing the new dependent variables (U1, U2), where

U1 = H1(x,u) (6.30)

is found by solving the linear first order partial differential equation

(∇uH1) · r(2) = 0, (6.31)

provided that the following conditions are satisfied:

(∇uλ1) · r(2) = 0,(
∇u ((∇uH1) · g) +

∂(∇uH1)

∂t
+ λ1

∂(∇uH1)

∂x

)
· r(2) = 0.

(6.32)

Remark 6.3.1. If H1 is independent of t and x, then condition (6.32)2 re-
duces to (

∇u

(
l(1) · g

))
· r(2) = 0. (6.33)

(II) Full decoupling.
Actually, the full decoupling can be considered as a subcase of partial
decoupling. In fact, in addition to the constraints necessary to par-
tially decouple the system (6.12), we need to require also that Ã21 is
vanishing, and Ã22 and G2 are independent of U1. The same steps
as in previous subsection provide the following result. We need to
introduce the new dependent variables Ui = Hi(x,u) (i = 1, 2) by
solving

(∇uH1) · r(2) = 0, (∇uH2) · r(1) = 0, (6.34)

and a fully decoupled system is recovered provided that the condi-
tions

(∇uλi) · r(j) = 0,(
∇u ((∇uHi) · g) +

∂(∇uHi)

∂t
+ λi

∂(∇uHi)

∂x

)
· r(j) = 0,

(6.35)

where i, j = 1, 2, i 6= j, are fulfilled.
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Remark 6.3.2. If H1 and H2 are independent of t and x, then the structure
conditions leading to the full decoupling become

(∇uλi) · r(j) = 0,(
∇u

(
l(i) · g

))
· r(j) = 0,

(6.36)

where i, j = 1, 2, i 6= j.

Example 6.3.1. Let us consider a 2×2 system where one of the field variables (u1)
is a velocity, and assume the system to be invariant with respect to the Galilean
group, i.e., let us take the system

∂u1

∂t
+ u1

∂u1

∂x
+ f1(u2)

∂u2

∂x
= g1(u2),

∂u2

∂t
+ f2(u2)

∂u1

∂x
+ u1

∂u2

∂x
= g2(u2),

(6.37)

where fi, gi (i = 1, 2) are arbitrary functions of their argument such that f1f2 > 0.
The characteristic velocities are

λ1 = u1 +
√
f1f2, λ2 = u1 −

√
f1f2, (6.38)

with associated left and right eigenvectors

l(1) =
(√

f2,
√
f1

)
, l(2) =

(√
f2,−

√
f1

)
,

r(1) =

( √
f1√
f2

)
, r(2) =

( √
f1

−
√
f2

)
.

(6.39)

The conditions (6.28), (6.29) and (6.31) provide

2f1 − (f1f2)′ = 0,

g′1 +

(√
f1

f2
g2

)′
= 0,

√
f1
∂H1

∂u1
−
√
f2
∂H1

∂u2
= 0,

(6.40)

(the prime denoting the differentiation with respect to the argument) whose inte-
gration gives ∫ √

f1

f2
du2 =

√
f1f2 − κ1,

g1 = κ2 −

√
f1

f2
g2,

H1 = H1

(
u1 +

∫ √
f1

f2
du2

)
,

(6.41)

where κ1 and κ2 are arbitrary constants.
By choosing the new dependent variables as

U1 = u1 +
√
f1f2 − κ1, U2 = u2, (6.42)
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and replacing the inverse transformation of (6.42) in (6.37), i.e.,

u1 = U1 −
√
f1f2 + κ1, u2 = U2, (6.43)

we get the following partially decoupled system

∂U1

∂t
+ (U1 + κ1)

∂U1

∂x
= κ2,

∂U2

∂t
+ f2(U2)

∂U1

∂x
+ (U1 − 2

√
f1(U2)f2(U2) + κ1)

∂U2

∂x
= g2(U2).

(6.44)

The system so considered, when

f2(u2) = u2, g1(u2) = g2(u2) = 0, (6.45)

represents the one–dimensional Euler equations of a barotropic fluid with density
u2 and pressure

p(u2) =

∫
u2f1(u2) du2. (6.46)

The constitutive law

p(u2) =
κ

3
u3

2, κ constant, (6.47)

allows to satisfy the decoupling conditions and, in the new variables

U1 = u1 +
√
κu2, U2 = u2, (6.48)

we have a partially decoupled system

∂U1

∂t
+ U1

∂U1

∂x
= 0,

∂U2

∂t
+ U2

∂U1

∂x
+ (U1 − 2

√
κU2)

∂U2

∂x
= 0.

(6.49)

6.4 Direct approach for the decoupling of hyperbolic
systems in three dependent variables

To decouple systems like (6.12) with n = 3 by means of an invertible
point transformation like (6.13), three main cases can be distinguished:

1. Partial Decoupling:

Ã13 =
∂Ã11

∂U3
=
∂Ã12

∂U3
=
∂G1

∂U3
= 0,

Ã23 =
∂Ã21

∂U3
=
∂Ã22

∂U3
=
∂G2

∂U3
= 0;

(6.50)

2. Partial Decoupling:

Ã31 = Ã32 =
∂Ã33

∂U1
=
∂Ã33

∂U2
=
∂G3

∂U1
=
∂G3

∂U2
= 0; (6.51)

3. Full Decoupling:
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A combination of both previous cases:

Ã13 =
∂Ã11

∂U3
=
∂Ã12

∂U3
=
∂G1

∂U3
= 0,

Ã23 =
∂Ã21

∂U3
=
∂Ã22

∂U3
=
∂G2

∂U3
= 0,

Ã31 = Ã32 =
∂Ã33

∂U1
=
∂Ã33

∂U2
=
∂G3

∂U1
=
∂G3

∂U2
= 0.

(6.52)

In the case 1, the first two equations can be solved for U1 and U2; insertion
of these solutions in the third equation leads to an equation for U3. In the
case 2, the third equation can be solved for U3; insertion of this solution in
the first two equations provides two equations for U1 and U2. Of course,
having a 2× 2 system, we can check the conditions derived in the previous
paragraph enabling us to perform a further decoupling.

6.4.1 Partial decoupling: case 1

Let us require that Ã13 = Ã23 = 0 and that Ã11, Ã12, Ã21, Ã22, andG1,G2

are independent of U3; after some algebra, we get some constraints on the
structure of (6.12) and the conditions leading to the variable transformation.

From Ã13 = Ã23 = 0, we obtain

0 = R
(3)
1 = r

(3)
1 C11 + r

(3)
2 C21 + r

(3)
3 C31,

0 = R
(3)
2 = r

(3)
1 C12 + r

(3)
2 C22 + r

(3)
3 C32,

(6.53)

where we denoted with Cij the cofactor of the (i, j)–entry of matrix ∇Uh,
whereupon it follows

(∇uH1) · r(3) = 0,

(∇uH2) · r(3) = 0.
(6.54)

Therefore, we have

Ã11 = (Λ1 − Λ2)
R

(1)
2 R

(2)
1

∆
+ Λ1, Ã12 = −(Λ1 − Λ2)

R
(1)
1 R

(2)
1

∆
,

Ã21 = (Λ1 − Λ2)
R

(1)
2 R

(2)
2

∆
, Ã22 = −(Λ1 − Λ2)

R
(1)
2 R

(2)
1

∆
+ Λ2,

(6.55)

where ∆ = R
(1)
1 R

(2)
2 −R

(1)
2 R

(2)
1 .

It is easily ascertained that the entries Ãij (i, j = 1, 2) are independent
of U3 if Λ1 and Λ2 do not depend on U3, and

∂

∂U3

(
R

(1)
2

R
(1)
1

)
= 0,

∂

∂U3

(
R

(2)
1

R
(2)
2

)
= 0. (6.56)

Therefore, we obtain

(∇uλ1) · ∂h

∂U3
= 0, (∇uλ2) · ∂h

∂U3
= 0, (6.57)
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that, taking into account (6.53), which means that the vectors
∂h

∂U3
and r(3)

are parallel, can be rewritten as

(∇uλ1) · r(3) = 0, (∇uλ2) · r(3) = 0. (6.58)

From (6.56), through the use of the relation R(i) = (∇uH)r(i), it follows

∇u

(
(∇uH2) · r(1)

(∇uH1) · r(1)

)
· r(3) = 0, ∇u

(
(∇uH1) · r(2)

(∇uH2) · r(2)

)
· r(3) = 0. (6.59)

Because of (6.54) we can write

∇uHk = αk(t, x,u) l(1) + βk(t, x,u) l(2), k = 1, 2, (6.60)

where αk and βk are suitable functions such that α1β2 − α2β1 6= 0.
Inserting (6.60) in (6.59), we get

(α1β2 − α2β1)(l(1) · r(1))l(2) ·
(

(∇ur(1))r(3) − (∇ur(3))r(1)
)

= 0,

(α1β2 − α2β1)(l(2) · r(2))l(1) ·
(

(∇ur(2))r(3) − (∇ur(3))r(2)
)

= 0;
(6.61)

therefore, we obtain the following additional structure conditions:

l(2) ·
(

(∇ur(1))r(3) − (∇ur(3))r(1)
)

= 0,

l(1) ·
(

(∇ur(2))r(3) − (∇ur(3))r(2)
)

= 0.
(6.62)

Moreover, by requiring
∂G1

∂U3
=
∂G2

∂U3
= 0, after some algebra we get

(
∇u((∇uHi) · g) +

∂(∇uHi)

∂t
+ λi

∂(∇uHi)

∂x

)
·r(3) = 0, i = 1, 2. (6.63)

6.4.2 Partial decoupling: case 2

From Ã31 = Ã32 = 0, it follows that

0 = R
(1)
3 = r

(1)
1 C13 + r

(1)
2 C23 + r

(1)
3 C33,

0 = R
(2)
3 = r

(2)
1 C13 + r

(2)
2 C23 + r

(2)
3 C33,

(6.64)

i.e.,
(∇uH3) · r(1) = 0,

(∇uH3) · r(2) = 0.
(6.65)
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In this case, the expression of entries of Ã reads

Ã11 = (Λ1 − Λ2)
R

(1)
2 R

(2)
1

∆
+ Λ1, Ã12 = −(Λ1 − Λ2)

R
(1)
1 R

(2)
1

∆
,

Ã13 =
(Λ1 − Λ2)R

(1)
1 R

(2)
1 R

(3)
2 − (Λ1 − Λ3)R

(1)
1 R

(2)
2 R

(3)
1

R
(3)
3 ∆

+
(Λ2 − Λ3)R

(1)
2 R

(2)
1 R

(3)
1

R
(3)
3 ∆

,

Ã21 = (Λ1 − Λ2)
R

(1)
2 R

(2)
2

∆
, Ã22 = −(Λ1 − Λ2)

R
(1)
2 R

(2)
1

∆
+ Λ2,

Ã23 =
−(Λ1 − Λ2)R

(1)
2 R

(2)
2 R

(3)
1 + (Λ1 − Λ3)R

(1)
2 R

(2)
1 R

(3)
2

R
(3)
3 ∆

− (Λ2 − Λ3)R
(1)
1 R

(2)
2 R

(3)
2

R
(3)
3 ∆

, Ã33 = Λ3,

(6.66)

where ∆ = R
(1)
1 R

(2)
2 −R

(1)
2 R

(2)
1 .

The independence of Ã33 from U1 and U2 leads us to get

∂Λ3

∂U1
=
∂Λ3

∂U2
= 0, (6.67)

i.e.,

(∇uλ3) · ∂h

∂U1
= 0, (∇uλ3) · ∂h

∂U2
= 0. (6.68)

Recalling that (6.64) means that the vectors
∂h

∂U1
and

∂h

∂U2
belong to the

plane spanned by r(1) and r(2), the conditions (6.68) can be rewritten as

(∇uλ3) · r(1) = 0, (∇uλ3) · r(2) = 0, (6.69)

that are the structure conditions on the original system.

Finally, by requiring
∂G3

∂U1
=
∂G3

∂U2
= 0 we get

(
∇u((∇uH3) · g) +

∂(∇uH3)

∂t
+ λ3

∂(∇uH3)

∂x

)
· r(i) = 0, (6.70)

for i = 1, 2.

6.4.3 Full decoupling

It is now clear that we may decouple the system into two non–interact-
ing blocks if the conditions of both cases 1 and 2 are verified.
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Example 6.4.1. Let us consider the following Galilean first order system:

∂u1

∂t
+ (u1 + p11)

∂u1

∂x
+ p12

∂u2

∂x
+ p13

∂u3

∂x
= g1,

∂u2

∂t
+
p11p22

p12

∂u1

∂x
+ (u1 + p22)

∂u2

∂x
+ p23

∂u3

∂x
= g2,

∂u3

∂t
+ (u1 + p33)

∂u3

∂x
= g3,

(6.71)

where pij , gi (i, j = 1, . . . , 3) are arbitrary functions of u2 and u3.
The characteristic velocities are

λ1 = u1, λ2 = u1 + p11 + p22, λ3 = u1 + p33, (6.72)

with associated left and right eigenvectors

l(1) = (p22p33,−p12p33, p12p23 − p13p22) , l(3) = (0, 0, 1),

l(2) = (p11(p11 + p22,−p33), p12(p11 + p22,−p33), p11p13 + p12p23) ,

r(1) =

 p12

−p11

0

 , r(2) =

 p12

p22

0

 ,

r(3) =

 p12(p13(p22 − p33)− p12p23)
p11(p12p23 − p13p22)− p12p23p33)

p12p33(p11 + p22 − p33)

 .

(6.73)

By taking p13 =
u2

u3
p12, conditions (6.54), (6.58), (6.62) and (6.63) give us the

following relations

H1 = H1(u1, u2u3), H2 = H2(u1, u2u3),

p11 = q11 − q22, p12 =
q12

u2
,

p22 = q22, p23 =
u2

u3
(q22 − p33),

g1 = c1, g2 = u2

(
c2 −

g3

u3

)
,

(6.74)

where q11, q12, q22, c1 and c2 are arbitrary functions of (u2u3).
By choosing the new dependent variables as

U1 = u1 + u2u3, U2 = u2u3, U3 = u3, (6.75)

and replacing the inverse transformation of (6.75), i.e.,

u1 = U1 − U2, u2 =
U2

U3
, u3 = U3, (6.76)
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in (6.71), we get the following partially decoupled system

∂U1

∂t
+

(
U1 + U2

(
q22

q12
(q11 − q22)− 1

)
+ q11 − q22

)
∂U1

∂x

+

(
U2
q22

q12
(q22 − q11) +

q12

U2
+ 2q22 − q11

)
∂U2

∂x
= c1 + U2 c2,

∂U2

∂t
+

(
U2
q22

q12
(q11 − q22)

)
∂U1

∂x

+

(
U1 + U2

(
q22

q12
(q22 − q11)− 1

)
+ q22

)
∂U2

∂x
= U2 c2,

∂U3

∂t
+

(
U1 − U2 + p33

(
U2

U3
, U3

))
∂U3

∂x
= g3

(
U2

U3
, U3

)
,

(6.77)

where the first two equations do not depend on U3.

6.5 Decoupling of hyperbolic homogeneous and au-
tonomous systems

The results of previous Sections suggest us the form of the necessary
and sufficient conditions for the decoupling problem in the general case of
quasilinear first order systems in two independent variables and an arbi-
trary number n of dependent variables.

Let us start by considering the case of a hyperbolic first order homoge-
neous and autonomous quasilinear system of partial differential equations
in two independent variables, and provide the necessary and sufficient con-
ditions for decoupling it.

Let us introduce the notation we will use, and formally define the mean-
ing of partially and fully decoupled systems.

Definition 6.5.1 (Notation). Given U ≡ (U1, . . . , Un)T ∈ Rn, and a set of
k ≥ 2 integers n1, . . . , nk such that n1 + . . . + nk = n, let us relabel and group
the components of U as follows:{

{U (1,1), . . . , U (1,n1)}, . . . , {U (k,1), . . . , U (k,nk)}
}
. (6.78)

Moreover, let us set

Ui =

i⋃
r=1

{
U (r,1), . . . , U (r,nr)

}
, U i =

k⋃
r=i+1

{
U (r,1), . . . , U (r,nr)

}
; (6.79)

the cardinality of the set Ui is mi, whereas the cardinality of the set U i is n −mi,
where mi = n1 + . . .+ ni.

Definition 6.5.2 (Partially decoupled systems). The first order quasilinear sys-
tem

∂U

∂t
+ T (U)

∂U

∂x
= 0, (6.80)

U ≡ (U1, . . . , Un)T ∈ Rn, T being an n × n real matrix with entries smooth
functions depending on U, is partially decoupled in 2 ≤ k ≤ n subsystems of
some orders n1, . . . , nk (n1 + . . . + nk = n) if, relabelling and suitably collecting
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the components of U in k subgroups, say{
{U (1,1), . . . , U (1,n1)}, . . . , {U (k,1), . . . , U (k,nk)}

}
, (6.81)

we recognize k subsystems such that the i–th subsystem (i = 1, . . . , k) involves at
most the mi field variables of the set Ui.

Definition 6.5.3 (Fully decoupled systems). The first order quasilinear system

∂U

∂t
+ T (U)

∂U

∂x
= 0, (6.82)

U ≡ (U1, . . . , Un)T ∈ Rn, T being an n × n real matrix with entries smooth
functions depending on U, is fully decoupled in 2 ≤ k ≤ n subsystems of some
orders n1, . . . , nk (n1 + . . . + nk = n) if, relabelling and suitably collecting the
components of U in k subgroups, say{

{U (1,1), . . . , U (1,n1)}, . . . , {U (k,1), . . . , U (k,nk)}
}
, (6.83)

we recognize k subsystems such that the i–th subsystem (i = 1, . . . , k) involves
exactly the ni field variables {U (i,1), . . . , U (i,ni)}.

The following lemma will direct us to prove a theorem providing nec-
essary and sufficient conditions for the partial decoupling of a hyperbolic
first order quasilinear system in two independent variables.

Lemma 6.5.1. Let T be an n× n lower triangular block real matrix, say

T =



T 1
1 01

2 01
3 . . . 01

k−1 01
k

T 2
1 T 2

2 02
3 . . . 02

k−1 02
k

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

T k−1
1 T k−1

2 T k−1
3 . . . T k−1

k−1 0k−1
k

T k1 T k2 T k3 . . . T kk−1 T kk

 , (6.84)

T ij being ni × nj matrices with entries smooth functions depending on U ≡
(U1, . . . , Un)T , and 0ij ni × nj matrices of zeros (n1 + . . .+ nk = n; 2 ≤ k ≤ n).
Let us assume that matrix T has real eigenvalues and a complete set of eigenvec-
tors. By relabelling and suitably collecting the components of U in k subgroups,
say {

{U (1,1), . . . , U (1,n1)}, . . . , {U (k,1), . . . , U (k,nk)}
}
, (6.85)

it can be stated that the entries of matrices T ij (i = 1, . . . , k; j = 1, . . . , i) depend
at most on the mi variables of the set Ui if and only if:

1. the set of the eigenvalues of T (counted with their multiplicity) and the cor-
responding left and right eigenvectors can be divided into k subsets each
containing ni (i = 1, . . . , k) elements, say{

{Λ(1,1), . . . ,Λ(1,n1)}, . . . , {Λ(k,1), . . . ,Λ(k,nk)}
}
,{

{L(1,1), . . . ,L(1,n1)}, . . . , {L(k,1), . . . ,L(k,nk)}
}
,{

{R(1,1), . . . ,R(1,n1)}, . . . , {R(k,1), . . . ,R(k,nk)}
}
,

(6.86)
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where
{Λ(i,1), . . . ,Λ(i,ni)} (6.87)

are the eigenvalues (counted with their multiplicity) of matrix T ii ;

2. the following structure conditions hold true:(
∇UΛ(i,α)

)
·R(j,γ) = 0,

L(i,α) ·
(

(∇UR(`,β))R(j,γ)
)

= 0,

i = 1, . . . , k − 1, ` = 1, . . . , i,

α = 1, . . . , ni, β = 1, . . . , n`, α 6= β if i = `,

j = i+ 1, . . . , k, γ = 1, . . . , nj ,

(6.88)

where

∇U ≡
(

∂

∂U (1,1)
, . . . ,

∂

∂U (1,n1)
, . . . ,

∂

∂U (k,1)
, . . . ,

∂

∂U (k,nk)

)
. (6.89)

Proof. Let the lower triangular block matrix T be such that the entries of
matrices T ij (i = 1, . . . , k − 1; j = 1, . . . , i) depend at most on the elements
of the set Ui.

The set of the n eigenvalues of T is the union of the sets of the ni eigen-
values of T ii (i = 1, . . . , k); since the entries of matrix T ii depend at most on
the elements of the set Ui, the same can be said for its ni eigenvalues.

Let us denote the set of left and right eigenvectors of matrix T as in
(6.86), and group the components of a right (left, respectively) eigenvector
R(r,α) (L(r,α), respectively) as follows:

R(r,α) =


R

(r,α)
1

R
(r,α)
2

. . .

R
(r,α)
k

 , L(r,α) =
(
L

(r,α)
1 ,L

(r,α)
2 , . . . ,L

(r,α)
k

)
, (6.90)

where R
(r,α)
i (L(r,α)

i , respectively) are column (row, respectively) vectors
with ni components.

Taking into account the relations for the left eigenvectors,

L
(r,α)
1 T 1

1 + L
(r,α)
2 T 2

1 + . . .+ L
(r,α)
k−1 T

k−1
1 +L

(r,α)
k T k1 = Λ(r,α)L

(r,α)
1 ,

L
(r,α)
2 T 2

2 + . . .+ L
(r,α)
k−1 T

k−1
2 +L

(r,α)
k T k2 = Λ(r,α)L

(r,α)
2 ,

. . . . . .

L
(r,α)
k−1 T

k−1
k−1 +L

(r,α)
k T kk−1 = Λ(r,α)L

(r,α)
k−1 ,

L
(r,α)
k T kk = Λ(r,α)L

(r,α)
k ,

(6.91)

since Λ(r,α) is an eigenvalue of T rr , if r < k, we can choose L
(r,α)
r+1 , . . . ,L

(r,α)
k

as zero row vectors; this means that the left eigenvectors L(r,α) (α = 1, . . . ,
nr) may have non–vanishing only the first mr components (mr = n1 +
. . . + nr); moreover, due to the hypotheses of the functional dependence
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of matrices T ij , the components of L
(r,α)
1 , . . . ,L

(r,α)
r depend at most on the

elements of the set Ur.
Analogously, by considering the relations for the right eigenvectors,

T 1
1 R

(r,α)
1 = Λ(r,α)R

(r,α)
1 ,

T 2
1 R

(r,α)
1 + T 2

2 R
(r,α)
2 = Λ(r,α)R

(r,α)
2 ,

. . . . . .

T k−1
1 R

(r,α)
1 + T k−1

2 R
(r,α)
2 + . . .+ T k−1

k−1 R
(r,α)
k−1 = Λ(r,α)R

(r,α)
k−1 ,

T k1 R
(r,α)
1 + T k2 R

(r,α)
2 + . . .+ T kk−1R

(r,α)
k−1 + T kkR

(r,α)
k = Λ(r,α)R

(r,α)
k ,

(6.92)

since Λ(r,α) is an eigenvalue of T rr , if r > 1, we can choose R
(r,α)
1 , . . . ,R

(r,α)
r−1

as zero column vectors; this means that the right eigenvectors R(r,α) (α =
1, . . . , nr) for r > 1 may have non–vanishing only the last n − mr−1 com-
ponents; moreover, due to the hypotheses of the functional dependence of
matrices T rr , the components of R

(r,α)
s (s = r, . . . , k) depend at most on the

elements of the set Us. Notice that, because of the hyperbolicity assumption,
the vectors R

(r,α)
r , as well as the vectors L

(r,α)
r (r = 1, . . . , k; α = 1, . . . , nr)

are linearly independent.
As a consequence, conditions (6.88) are trivially satisfied. In fact, at

most the firstmi components of the vector∇UΛ(i,α) may be non–vanishing,
whereas the first mj−1 components of R(j,γ) are zero: since j > i,(

∇UΛ(i,α)
)
·R(j,γ) = 0. (6.93)

Moreover, since the first m`−1 components of R(`,β) are vanishing, the com-
ponents of R

(`,β)
s (s = `, . . . , k) depend at most on Us, the firstmj−1 of R(j,γ)

are vanishing, and j > `, it follows that the first mj components of the vec-
tor (∇UR(`,β))R(j,γ) are vanishing; therefore, it is

L(i,α) ·
(

(∇UR(`,β))R(j,γ)
)

= 0. (6.94)

Vice versa, if conditions (6.88) hold true, then it can be proved that all en-
tries of matrices T ij (i = 1, . . . , k − 1; j = 1, . . . , i) depend at most on the
elements of the set Ui.

At first, let us prove that from (6.88)1 it follows that Λ(r,α) (1 ≤ r <
k; α = 1, . . . , nr) can at most depend on the elements of the set Ur.

Let us denote with Λ one of the eigenvalues of the matrix T rr (1 ≤ r < k),
and let us set

∇U ≡ (∇1, . . . ,∇k) , (6.95)

where

∇i ≡
(

∂

∂U (i,1)
, . . . ,

∂

∂U (i,ni)

)
, i = 1, . . . , k. (6.96)
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Since R(j,γ) for j > r may have non–vanishing only the last n−mj−1 com-
ponents, conditions (6.88)1 read

(∇r+1Λ) ·R(r+1,γ)
r+1 + (∇r+2Λ) ·R(r+1,γ)

r+2 + . . .+ (∇kΛ) ·R(r+1,γ)
k = 0,

(∇r+2Λ) ·R(r+2,γ)
r+2 + . . .+ (∇kΛ) ·R(r+2,γ)

k = 0,

. . .

(∇kΛ) ·R(k,γ)
k = 0,

(6.97)
whereupon it immediately follows that

∂Λ

∂U (r+1,1)
= . . . =

∂Λ

∂U (r+1,nr+1)
= . . . =

∂Λ

∂U (k,1)
= . . . =

∂Λ

∂U (k,nk)
= 0.

(6.98)
Moreover, because of the lower triangular block structure of matrix T , the
left eigenvectors L(i,α) may have non–vanishing only the first mi compo-
nents, and the right eigenvectors R(j,γ) may have non–vanishing only the
last n−mj−1 components, (6.88)2 can be written as:

i∑
r=`

(
L(i,α)
r ·

(
(∇jR(`,β)

r )R
(j,γ)
j + . . .+ (∇kR(`,β)

r )R
(j,γ)
k

))
= 0, (6.99)

for i = 1, . . . , k − 1, ` ≤ i, j = i+ 1, . . . , k, and α 6= β for ` = i.
From the relations

T rrR(r,α)
r = Λ(r,α)R(r,α)

r , r = 1, . . . , k − 1, (6.100)

for j > r, we obtain k∑
s=j

(∇sT rr )R(j,γ)
s

R(r,α)
r + (T rr − Λ(r,α)Ir)

 k∑
s=j

(∇sR(r,α)
r )R(j,γ)

s

 = 0,

(6.101)
Ir being the r × r identity matrix, whereupon

L(r,β)
r ·

 k∑
s=j

(∇sArr)R(j,γ)
s

R(r,α)
r

+ (Λ(r,β) − Λ(r,α))L(r,β)
r ·

 k∑
s=j

(∇sR(r,α)
r )R(j,γ)

s

 = 0.

(6.102)

As a consequence, either when α = β, or using (6.99) when α 6= β, it is

L(r,β)
r ·

 k∑
s=j

(∇sT rr )R(j,γ)
s

R(r,α)
r = 0 (6.103)

for α, β = 1, . . . , nr. Therefore, using (6.103) for j = k, k − 1, . . . , r + 1, it
remains proved that all entries of the matrix T rr (r = 1, . . . , k− 1), and so all
the components of R

(r,α)
r , depend at most on the elements of the set Ur.

Let us now take the relations (6.99); by specializing them neatly for ` =
i− 1, i− 2, . . . , 1 and j = k, k − 1, . . . , i+ 1, it is immediately deduced that
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the components of R
(r,α)
s for s ≥ r depend at most on the elements of the

set Us.
Finally, from the relations

i∑
s=r

T isR
(r,α)
s = Λ(r,α)R

(r,α)
i , r = 1, . . . , i, i < k, (6.104)

for j > i, we obtain

i∑
s=r

 k∑
t=j

(∇tT is)R
(j,γ)
t

R(r,α)
s

 = 0. (6.105)

By neatly specializing the relations (6.105) for r = i− 1, i− 2, . . . , 1 and j =
k, k − 1, . . . , i+ 1, it follows that the entries of the matrices T is (s = 1, . . . , i)
depend at most on the mi variables of the set Ui, and this completes the
proof.

Remark 6.5.1. Relations (6.88) provide
k∑
i=1

nimi(n−mi) constraints, and this is

exactly the number of conditions required to ensure that the entries of matrices T ij
(i = 1, . . . , k; j = 1, . . . , i) are independent of the elements of the set U i. In fact,
the number of entries of the matrices T ij are nimi, and the cardinality of the set U i
is n−mi.

Remark 6.5.2. If matrix T has the lower triangular block structure (6.84) then,
since the first mj−1 components of R(j,γ) are vanishing, and j > i ≥ `, the
first mi components of the vector (∇UR(j,γ))R(`,β) can not be different from zero;
therefore, it is identically

L(i,α) ·
(

(∇UR(j,γ))R(`,β)
)

= 0,

i = 1, . . . , k − 1, ` = 1, . . . , i,

α = 1, . . . , ni, β = 1, . . . , n`, α 6= β if i = `,

j = i+ 1, . . . , k, γ = 1, . . . , nj .

(6.106)

Consequently, conditions (6.88) may be written as well as(
∇UΛ(i,α)

)
·R(j,γ) = 0,

L(i,α) ·
(

(∇UR(`,β))R(j,γ) − (∇UR(j,γ))R(`,β)
)

= 0,

i = 1, . . . , k − 1, ` = 1, . . . , i,

α = 1, . . . , ni, β = 1, . . . , n`, α 6= β if i = `,

j = i+ 1, . . . , k, γ = 1, . . . , nj .

(6.107)

This result reveals useful in the proof of next theorem.

By using Lemma 6.5.1, it is immediately proved the following theorem.

Theorem 6.5.1. The first order quasilinear system

∂u

∂t
+A(u)

∂u

∂x
= 0, (6.108)
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with u ∈ Rn, A n× n real matrix with entries smooth functions of u, assumed to
be hyperbolic in the t–direction, can be transformed by a smooth (locally) invertible
transformation

u = h(U), or, equivalently, U = H(u), (6.109)

into a system like
∂U

∂t
+ T (U)

∂U

∂x
= 0, (6.110)

in the unknowns

U ≡
(
U (1,1), . . . , U (1,n1), . . . , U (k,1), . . . , U (k,nk)

)T
, (6.111)

where T = (∇uH)A (∇uH)−1 is a lower triangular block matrix having the form
(6.84) with T ij (i = 1, . . . , k; j = 1, . . . , i) ni×nj matrices such that their entries
are smooth functions depending at most on the elements of the set Ui, whereas 0ij
are ni × nj matrices of zeros, respectively, if and only if:

1. the set of the eigenvalues of matrix A (counted with their multiplicity), and
the associated left and right eigenvectors can be divided into k subsets each
containing ni (i = 1, . . . , k) elements, say{

{λ(1,1), . . . , λ(1,n1)}, . . . , {λ(k,1), . . . , λ(k,nk)}
}
,{

{l(1,1), . . . , l(1,n1)}, . . . , {l(k,1), . . . , l(k,nk)}
}
,{

{r(1,1), . . . , r(1,n1)}, . . . , {r(k,1), . . . , r(k,nk)}
}

;

(6.112)

2. the following structure conditions hold true:(
∇uλ

(i,α)
)
· r(j,γ) = 0,

l(i,α) ·
(

(∇ur(`,β))r(j,γ) − (∇ur(j,γ))r(`,β)
)

= 0,

i = 1, . . . , k − 1, ` = 1, . . . , i,

α = 1, . . . , ni, β = 1, . . . , n`, α 6= β if i = `,

j = i+ 1, . . . , k, γ = 1, . . . , nj .

(6.113)

Moreover, the decoupling variables U (i,α) = H(i,α)(u) (i = 1, . . . , k − 1; α =
1, . . . , ni) are found from (

∇uH
(i,α)

)
· r(j,γ) = 0, (6.114)

where j = i+ 1, . . . , k, γ = 1, . . . , nj .

Proof. Let us consider the hyperbolic system

∂u

∂t
+A(u)

∂u

∂x
= 0, (6.115)

and denote the k subsets each containing ni (i = 1, . . . , k) eigenvalues
(counted with their multiplicity), together with their associated left and
right eigenvectors, as in (6.112). The hyperbolicity condition implies that
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the eigenvalues λ(i,α) (i = 1, . . . , k; α = 1, . . . , ni) are real, whereas the cor-
responding left (right, respectively) eigenvectors are linearly independent
and span Rn.

Let us assume that the conditions (6.113) are satisfied. Then, by intro-
ducing a smooth (locally) invertible transformation like (6.109) such that(

∇uH
(i,α)

)
· r(j,γ) = 0,

i = 1, . . . , k − 1, α = 1, . . . , ni,

j = i+ 1, . . . , k, γ = 1, . . . , nj ,

(6.116)

we obtain the system (6.110), where T is a lower triangular block matrix
like (6.84).

It remains to prove that the entries of the matrices T ij (i = 1, . . . , k −
1; j = 1, . . . , i) do not depend on the elements of the set U i.

It is

λ(i,α) = Λ(i,α), l(i,α) = L(i,α)(∇uH), r(i,α) = (∇uH)−1R(i,α),
(6.117)

and also
∇u(·) = ∇U(·)(∇uH). (6.118)

As a consequence, we have:

0 =
(
∇uλ

(i,α)
)
· r(j,γ) =

=
(
∇UΛ(i,α)

)
(∇uH)(∇UH)−1R(j,γ) =

=
(
∇UΛ(i,α)

)
·R(j,γ),

(6.119)

whereupon(
∇uλ

(i,α)
)
· r(j,γ) = 0 ⇔

(
∇UΛ(i,α)

)
·R(j,γ) = 0. (6.120)
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Furthermore, it is

0 = l(i,α) ·
(

(∇ur(`,β))r(j,γ) − (∇ur(j,γ))r(`,β)
)

=

= L(i,α) (∇uH)
(
∇u

(
(∇uH)−1R(`,β)

)
(∇uH)−1R(j,γ)

−∇u

(
(∇uH)−1R(j,γ)

)
(∇uH)−1R(`,β)

)
=

= L(i,α) (∇uH)
(
∇U

(
(∇uH)−1R(`,β)

)
(∇uH)(∇uH)−1R(j,γ)

−∇U

(
(∇uH)−1R(j,γ)

)
(∇uH)(∇uH)−1R(`,β)

)
=

= L(i,α) (∇uH)
(
∇U

(
(∇uH)−1R(`,β)

)
R(j,γ)

−∇U

(
(∇uH)−1R(j,γ)

)
R(`,β)

)
=

= L(i,α)(∇uH)
(
∇U

(
(∇uH)−1

) (
R(`,β)R(j,γ) −R(j,γ)R(`,β)

)
+(∇uH)−1

(
(∇UR(`,β))R(j,γ) − (∇UR(j,γ))R(`,β)

))
=

= L(i,α) ·
(

(∇UR(`,β))R(j,γ) − (∇UR(j,γ))R(`,β)
)

=

= L(i,α) ·
(

(∇UR(`,β))R(j,γ)
)
,

(6.121)

whereupon

L(i,α) ·
(

(∇UR(`,β))R(j,γ)
)

= 0 ⇔

⇔ l(i,α) ·
(

(∇ur(`,β))r(j,γ) − (∇ur(j,γ))r(`,β)
)

= 0.
(6.122)

As a result, by using Lemma 6.5.1, the entries of the matrices T ij (i = 1, . . . ,

k − 1; j = 1, . . . , i) do not depend on the elements of the set U i.
Vice versa, if the entries of the matrices T ij (i = 1, . . . , k− 1; j = 1, . . . , i)

do not depend on the elements of the set U i, i.e., the system is partially
decoupled in k subsystems, then, because of (6.120) and (6.122), conditions
(6.113) must hold, and this concludes the proof.

As a byproduct of Theorem 6.5.1 we may recover immediately the con-
ditions for the full decoupling problem in the case of hyperbolic first order
quasilinear systems.

Theorem 6.5.2 (Full decoupling of hyperbolic systems). For a hyperbolic sys-
tem of first order homogeneous and autonomous quasilinear partial differential
equations like

∂u

∂t
+A(u)

∂u

∂x
= 0, (6.123)

u ∈ Rn, A n × n real matrix with entries smooth functions of u, to be locally
reducible into k non–interacting subsystems of some orders n1, . . . , nk, with n1 +
. . .+ nk = n, in the unknowns

U ≡
(
U (1,1), . . . , U (1,n1), . . . , U (k,1), . . . , U (k,nk)

)T
, (6.124)

respectively, it is necessary and sufficient that:
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1. the characteristic velocities (counted with their multiplicity), and the cor-
responding left and right eigenvectors can be divided into k subsets each
containing ni (i = 1, . . . , k) elements, say{

{λ(1,1), . . . , λ(1,n1)}, . . . , {λ(k,1), . . . , λ(k,nk)}
}
,{

{l(1,1), . . . , l(1,n1)}, . . . , {l(k,1), . . . , l(k,nk)}
}
,{

{r(1,1), . . . , r(1,n1)}, . . . , {r(k,1), . . . , r(k,nk)}
}

;

(6.125)

2. the following structure conditions hold true:(
∇uλ

(i,α)
)
· r(j,γ) = 0,

l(i,α) ·
(

(∇ur(i,β))r(j,γ) − (∇ur(j,γ))r(i,β)
)

= 0,

∀ i, j = 1, . . . , k, i 6= j,

α, β = 1, . . . , ni, α 6= β, γ = 1, . . . , nj .

(6.126)

Moreover, the decoupling variables

U (i,α) = H(i,α)(u), (6.127)

are found from (
∇uH

(i,α)
)
· r(j,γ) = 0, (6.128)

where
i, j = 1, . . . , k, i 6= j, α = 1, . . . , ni, γ = 1, . . . , nj .

The coefficient matrix for a fully decoupled system results in block diagonal form
(diagonal if k = n).

Proof. It immediately follows from Theorem 6.5.1.

Some comments about the decoupling conditions of previous theorem
and some well known facts concerning wave solutions of hyperbolic quasi-
linear systems are needed. For such systems, it is relevant to quantify the
dependence of the wave speeds (the eigenvalues of coefficient matrix) upon
the field variables (see [96]). More precisely, we may compute the change of
the characteristic speed λ(i) across a wave with speed λ(j), say

(
∇uλ

(i)
)
·r(j).

For j = i we have the decay coefficient
(
∇uλ

(i)
)
· r(i); this is of special

importance since it determines the genuine nonlinearity or linear degen-
eracy of the wave [11, 52]. In the case of completely exceptional systems,
i.e., systems where all admitted waves are linearly degenerate, weak waves
do not give rise to shock formation. Another important effect, which can
have dramatic consequences on the behavior of solutions, is due to the in-
teraction of two waves leading to the formation of waves in other fami-
lies. In particular, for incident waves belonging to different families, the
reflected wave is determined to leading order by the interaction coefficient
l(i) ·

(
(∇ur(j))r(`) − (∇ur(`))r(i)

)
[97].

Therefore, the conditions (6.126), guaranteeing the decoupling of a hy-
perbolic first order quasilinear system in k non–interacting subsystems,
have the following (obvious) meaning:
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1. the change in the characteristic speeds of a subsystem across a wave
of a different subsystem must be vanishing;

2. waves of different subsystems do not interact.

6.6 Decoupling of general homogeneous and autonom-
ous systems

In Section 6.5, we considered the decoupling problem for hyperbolic ho-
mogeneous and autonomous quasilinear systems. Here, we investigate the
case where the coefficient matrix does not possess a complete set of eigen-
vectors and/or has complex–valued eigenvalues. Also in this general case
we give necessary and sufficient conditions for the partial or full decou-
pling.

Definition 6.6.1. LetA be an n×n real matrix whose entries are smooth functions
depending on u ∈ Rn. If the matrixA has not a complete set of eigenvectors and/or
has complex–valued eigenvalues, let us associate:

• to each real eigenvalue its (left and right) eigenvectors and, if needed, its
generalized (left and right) eigenvectors in such a way we have as many
linearly independent vectors as the multiplicity of the eigenvalue;

• to each couple of conjugate complex eigenvalues the real part and the imag-
inary part of its (left and right) eigenvectors (or generalized eigenvectors,
if needed) in such a way we have as many couples of linearly independent
vectors as the multiplicity of the conjugate complex eigenvalues.

Let us denote such vectors with a superposed hat, and let us call them for simplicity
(left and right) autovectors.

Lemma 6.6.1. Let T be an n × n lower triangular block real matrix of the form
(6.84) whose entries are smooth functions depending on U,

U ≡
(
U (1,1), . . . , U (1,n1), . . . , U (k,1), . . . , U (k,nk)

)T
(6.129)

(n1 + . . . + nk = n), where T ij are ni × nj matrices, and 0ij ni × nj matrices of
zeros.

The entries of matrices T ij (i = 1, . . . , k; j = 1, . . . , i) depend at most on the
mi variables of the set Ui if and only if:

1. the set of the eigenvalues of T (counted with their multiplicity) with corre-
sponding left and right autovectors can be divided into k subsets each con-
taining ni (i = 1, . . . , k) elements, say{

{Λ(1,1), . . . ,Λ(1,n1)}, . . . , {Λ(k,1), . . . ,Λ(k,nk)}
}
,{

{L̂(1,1), . . . , L̂(1,n1)}, . . . , {L̂(k,1), . . . , L̂(k,nk)}
}
,{

{R̂(1,1), . . . , R̂(1,n1)}, . . . , {R̂(k,1), . . . , R̂(k,nk)}
}

;

(6.130)
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2. the following structure conditions hold true:(
∇UΛ(i,α)

)
· R̂(j,γ) = 0,

L̂(i,α) ·
(

(∇UR̂(`,β))R̂(j,γ)
)

= 0,

i = 1, . . . , k − 1, ` = 1, . . . , i,

α = 1, . . . , ni, β = 1, . . . , n`, α 6= β if i = `,

j = i+ 1, . . . , k, γ = 1, . . . , nj ,

(6.131)

where

∇U ≡
(

∂

∂U (1,1)
, . . . ,

∂

∂U (1,n1)
, . . . ,

∂

∂U (k,1)
, . . . ,

∂

∂U (k,nk)

)
. (6.132)

Proof. The proof is as that of Lemma 6.5.1 taking into account that:

1. the left autovectors L̂(r,α) (α = 1, . . . , nr) may have non–vanishing
only the first mr components;

2. the right autovectors R̂(r,α) (α = 1, . . . , nr) for r > 1 may have non–
vanishing only the last n−mr−1 components.

Moreover, using (6.131) and the relations defining the generalized eigen-
vectors, it is also proved that the entries of matrices T ir (r = 1, . . . , i) are
independent of the elements in the set U i.

Because of Lemma 6.6.1, Theorem 6.5.1 can be generalized to all first
order autonomous and homogeneous quasilinear systems.

Theorem 6.6.1. The first order quasilinear system (not necessarily hyperbolic)

∂u

∂t
+A(u)

∂u

∂x
= 0, (6.133)

u ∈ Rn,An×n real matrix with entries smooth functions of u, can be transformed
by a smooth (locally) invertible transformation

u = h(U), or, equivalently, U = H(u), (6.134)

into a system like
∂U

∂t
+ T (U)

∂U

∂x
= 0, (6.135)

in the unknowns

U ≡
(
U (1,1), . . . , U (1,n1), . . . , U (k,1), . . . , U (k,nk)

)T
, (6.136)

where T = (∇uH)A (∇uH)−1 is a lower triangular block matrix having the form
(6.84), with T ij (i = 1, . . . , k; j = 1, . . . , i) ni×nj matrices such that their entries
are smooth functions depending at most on the elements of the set Ui, whereas 0ij
are ni × nj matrices of zeros, respectively, if and only if:

1. the set of the eigenvalues (counted with their multiplicity) of matrix A, and
the associated left and right autovectors can be divided into k subsets each
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containing ni (i = 1, . . . , k) elements, say{
{λ(1,1), . . . , λ(1,n1)}, . . . , {λ(k,1), . . . , λ(k,nk)}

}
,{

{̂l(1,1), . . . , l̂(1,n1)}, . . . , {̂l(k,1), . . . , l̂(k,nk)}
}
,{

{r̂(1,1), . . . , r̂(1,n1)}, . . . , {r̂(k,1), . . . , r̂(k,nk)}
}

;

(6.137)

2. the following structure conditions hold true:(
∇uλ

(i,α)
)
· r̂(j,γ) = 0,

l̂(i,α) ·
(

(∇ur̂(`,β))r̂(j,γ) − (∇ur̂(j,γ))r̂(`,β)
)

= 0,

i = 1, . . . , k − 1, ` = 1, . . . , i,

α = 1, . . . , ni, β = 1, . . . , n`, α 6= β if i = `,

j = i+ 1, . . . , k, γ = 1, . . . , nj .

(6.138)

Moreover, the decoupling variables U (i,α) = H(i,α)(u) (i = 1, . . . , k − 1; α =
1, . . . , ni) are found from (

∇uH
(i,α)

)
· r̂(j,γ) = 0, (6.139)

where j = i+ 1, . . . , k, γ = 1, . . . , nj .

Proof. The proof, due to Lemma 6.6.1, is as that of Theorem 6.5.1.

Finally, we are able to state the following theorem providing the condi-
tions for the full decoupling of general first order quasilinear systems.

Theorem 6.6.2 (Full decoupling of general systems). For the first order homo-
geneous and autonomous quasilinear system (not necessarily hyperbolic)

∂u

∂t
+A(u)

∂u

∂x
= 0, (6.140)

u ∈ Rn, A n × n real matrix with entries smooth functions of u, to be locally
reducible into k non–interacting subsystems of some orders n1, . . . , nk, with n1 +
. . .+ nk = n, in the unknowns

U ≡
(
U (1,1), . . . , U (1,n1), . . . , U (k,1), . . . , U (k,nk)

)T
, (6.141)

respectively, it is necessary and sufficient that:

1. the eigenvalues of matrix A (counted with their multiplicity), and the corre-
sponding left and right autovectors can be divided into k subsets each con-
taining ni (i = 1, . . . , k) elements, say{

{λ(1,1), . . . , λ(1,n1)}, . . . , {λ(k,1), . . . , λ(k,nk)}
}
,{

{̂l(1,1), . . . , l̂(1,n1)}, . . . , {̂l(k,1), . . . , l̂(k,nk)}
}
,{

{r̂(1,1), . . . , r̂(1,n1)}, . . . , {r̂(k,1), . . . , r̂(k,nk)}
}

;

(6.142)
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2. the following structure conditions hold true:(
∇uλ

(i,α)
)
· r̂(j,γ) = 0,

l̂(i,α) ·
(

(∇ur̂(i,β))r̂(j,γ) − (∇ur̂(j,γ))r̂(i,β)
)

= 0,

∀ i, j = 1, . . . , k, i 6= j,

α, β = 1, . . . , ni, α 6= β, γ = 1, . . . , nj .

(6.143)

Moreover, the decoupling variables

U (i,α) = H(i,α)(u), (6.144)

are found from (
∇uH

(i,α)
)
· r̂(j,γ) = 0, (6.145)

where
i, j = 1, . . . , k, i 6= j, α = 1, . . . , ni, γ = 1, . . . , nj .

The coefficient matrix for a fully decoupled system results in block diagonal form
(diagonal if k = n).

Proof. It immediately follows from Theorem 6.6.1.

6.7 Decoupling of nonhomogeneous and/or nonauto-
nomous systems

In some physical applications it may occur to consider systems involv-
ing source terms, and/or systems where the coefficients may depend also
on the independent variables, accounting for material inhomogeneities, or
special geometric assumptions, or external actions [2, 18, 19, 48, 65, 78, 81].
Therefore, one has to deal with nonhomogeneous and/or nonautonomous
first order quasilinear systems of the form (6.10).

In some cases, systems like (6.10) may be transformed by a (locally) in-
vertible transformation to autonomous and homogeneous form or only to
autonomous form preserving the quasilinear structure. This is possible if
and only if the system (6.10) admits suitable algebras of Lie point symme-
tries. In [65] it has been proved a theorem stating necessary and sufficient
conditions in order to map systems like (6.10) to autonomous and homo-
geneous form. By relaxing the hypotheses, the same theorem can be used
to map systems (6.10) into autonomous and nonhomogeneous first order
quasilinear systems [22, 66].

Therefore, three different situations may occur:

1. System (6.10) can be mapped by an invertible point transformation to
an equivalent autonomous and homogeneous first order quasilinear
system in the independent variables t̂(t, x), x̂(t, x) and the dependent
variables U = U(t, x,u). It is required that it admits as subalgebra of
its algebra of Lie point symmetries a three–dimensional Lie algebra
spanned by the vector fields

Ξi = τi(t, x)
∂

∂t
+ ξi(t, x)

∂

∂x
+

n∑
A=1

ηAi (t, x,u)
∂

∂uA
(6.146)
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(i = 1, . . . , 3), such that

[Ξi,Ξj ] = 0, [Ξi,Ξ3] = Ξi, i, j = 1, 2; (6.147)

moreover, it has to be verified that all minors of order two extracted
from the 3×2 matrix with rows (τi, ξi) (i = 1, . . . , 3) are non–vanishing,
and the variables U, which by construction are invariants of Ξ1 and
Ξ2, result invariant with respect to Ξ3 too.

2. System (6.10) can be transformed to an equivalent autonomous and
nonhomogeneous first order quasilinear system in the independent
variables t̂(t, x), x̂(t, x) and the dependent variables U = U(t, x,u). It
is required that it admits as subalgebra of its algebra of Lie point sym-
metries a two–dimensional Lie algebra spanned by the vector fields

Ξi = τi(t, x)
∂

∂t
+ ξi(t, x)

∂

∂x
+

n∑
A=1

ηAi (t, x,u)
∂

∂uA
(6.148)

(i = 1, 2), such that the 2 × 2 matrix with rows (τi, ξi) (i = 1, 2) is
non–singular and

[Ξi,Ξj ] = 0, i, j = 1, 2. (6.149)

3. System (6.10) can not be transformed to autonomous form.

In the first case, the decoupling problem can be faced by using the re-
sults of previous Sections, whereas cases 2 and 3 can be managed together.

It is worth of being observed that the decoupling of the system (6.10)
is not affected by a variable change of the independent variables provided
that the new independent variables depend only on the old independent
variables. Therefore, we can manage in a unified way nonhomogeneous
quasilinear systems either when they are autonomous or not. So, we in-
troduce only new dependent variables U, as suitable functions of the old
dependent variables, and state the following two theorems for the partial
and the full decoupling.

Theorem 6.7.1 (Partial decoupling for quasilinear systems). The first order
quasilinear system

∂u

∂t
+A(t, x,u)

∂u

∂x
= g(t, x,u), (6.150)

u,g ∈ Rn,A n×n real matrix (the components of g as well as the entries of matrix
A are smooth functions depending on t, x and u), can be transformed by a smooth
(locally) invertible transformation

u = h(U), or, equivalently, U = H(u), (6.151)

into a system like
∂U

∂t
+ T (t, x,U)

∂U

∂x
= G(t, x,U), (6.152)

in the unknowns

U ≡
(
U (1,1), . . . , U (1,n1), . . . , U (k,1), . . . , U (k,nk)

)T
, (6.153)
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where

G ≡
(
G(1,1), . . . , G(1,n1), . . . , G(k,1), . . . , G(k,nk)

)T
, (6.154)

T = (∇uH)A (∇uH)−1 being a lower triangular block matrix having the form
(6.84), G = (∇uH)g, such that T ij and G(i,α) (i = 1, . . . , k; j = 1, . . . , i; α =

1, . . . , ni) depend at most on t, x and the elements of the set Ui, whereas 0ij are
ni × nj matrices of zeros, respectively, if and only if:

1. the set of the eigenvalues of matrix A (counted with their multiplicity), and
the associated left and right autovectors can be divided into k subsets each
containing ni (i = 1, . . . , k) elements, say{

{λ(1,1), . . . , λ(1,n1)}, . . . , {λ(k,1), . . . , λ(k,nk)}
}
,{

{̂l(1,1), . . . , l̂(1,n1)}, . . . , {̂l(k,1), . . . , l̂(k,nk)}
}
,{

{r̂(1,1), . . . , r̂(1,n1)}, . . . , {r̂(k,1), . . . , r̂(k,nk)}
}

;

(6.155)

2. the following structure conditions hold true:(
∇uλ

(i,α)
)
· r̂(j,γ) = 0,

l̂(i,α) ·
(

(∇ur̂(`,β))r̂(j,γ) − (∇ur̂(j,γ))r̂(`,β)
)

= 0,(
∇u(̂l(i,α) · g)

)
· r̂(j,γ) = 0,

i = 1, . . . , k − 1, ` = 1, . . . , i,

α = 1, . . . , ni, β = 1, . . . , n`, α 6= β if i = `,

j = i+ 1, . . . , k, γ = 1, . . . , nj .

(6.156)

Moreover, the decoupling variables U (i,α) = H(i,α)(u) (i = 1, . . . , k − 1; α =
1, . . . , ni) are found from (

∇uH
(i,α)

)
· r̂(j,γ) = 0, (6.157)

where j = i+ 1, . . . , k, γ = 1, . . . , nj .

Proof. The proof, due to Lemma 6.6.1, follows the same steps as those of
Theorem 6.5.1, the only difference being in the additional requirement ex-
pressed by (6.156)3.

It is
0 =

(
∇u(̂l(i,α) · g)

)
· r̂(j,γ) =

=
(
∇U(̂l(i,α) · g)

)
(∇uH)(∇uH)−1R̂(j,γ) =

=
(
∇U(L̂(i,α)(∇uH)(∇uH)−1G)

)
· R̂(j,γ) =

=
(
∇U(L̂(i,α) ·G)

)
· R̂(j,γ).

(6.158)

Therefore,(
∇u(̂l(i,α) · g)

)
· r̂(j,γ) = 0 ⇔

(
∇U(L̂(i,α) ·G)

)
· R̂(j,γ) = 0. (6.159)
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Since L̂(i,α) may have non–vanishing only the firstmi components, whereas
R̂(j,γ) may have non–vanishing only the last n−mj−1 components, condi-
tions (

∇U(L̂(i,α) ·G)
)
· R̂(j,γ) = 0 (6.160)

are necessary and sufficient in order the components {G(r,1), . . . ,G(r,nr)}
to be dependent at most on t, x and the elements of the set Ur, and this
concludes the proof.

Finally, we are able to state the following theorem providing a solu-
tion to the full decoupling problem for general nonhomogeneous and/or
nonautonomous first order quasilinear systems.

Theorem 6.7.2 (Full decoupling for nonhomogeneous quasilinear systems).
For the first order nonhomogeneous and/or nonautonomous quasilinear system,
say

∂u

∂t
+A(t, x,u)

∂u

∂x
= g(t, x,u), (6.161)

u,g ∈ Rn,A n×n real matrix (the components of g as well as the entries of matrix
A are smooth functions depending on t, x and u), to be locally reducible into k non–
interacting subsystems of some orders n1, . . . , nk, with n1 + . . .+ nk = n, in the
unknowns

U ≡
(
U (1,1), . . . , U (1,n1), . . . , U (k,1), . . . , U (k,nk)

)T
, (6.162)

respectively, it is necessary and sufficient that:

1. the eigenvalues of matrix A (counted with their multiplicity), and the corre-
sponding left and right autovectors can be divided into k subsets each con-
taining ni (i = 1, . . . , k) elements, say{

{λ(1,1), . . . , λ(1,n1)}, . . . , {λ(k,1), . . . , λ(k,nk)}
}
,{

{̂l(1,1), . . . , l̂(1,n1)}, . . . , {̂l(k,1), . . . , l̂(k,nk)}
}
,{

{r̂(1,1), . . . , r̂(1,n1)}, . . . , {r̂(k,1), . . . , r̂(k,nk)}
}

;

(6.163)

2. the following structure conditions hold true:(
∇uλ

(i,α)
)
· r̂(j,γ) = 0,

l̂(i,α) ·
(

(∇ur̂(i,β))r̂(j,γ) − (∇ur̂(j,γ))r̂(i,β)
)

= 0,(
∇u(̂l(i,α) · g)

)
· r̂(j,γ) = 0,

∀ i, j = 1, . . . , k, i 6= j,

α, β = 1, . . . , ni, α 6= β, γ = 1, . . . , nj .

(6.164)

Moreover, the decoupling variables

U (i,α) = H(i,α)(u), (6.165)

are found from (
∇uH

(i,α)
)
· r̂(j,γ) = 0, (6.166)
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where
i, j = 1, . . . , k, i 6= j, α = 1, . . . , ni, γ = 1, . . . , nj .

Proof. It immediately follows from Theorem 6.7.1.

6.8 Applications

In this Section, we consider some applications of the results above de-
rived. As far as the notation is concerned, the components of the field u are
denoted with the symbols typically used in the applications.

The first two examples are related to the Euler equations of an ideal gas
with the special value Γ = 3 [17, p. 88] for the adiabatic index, whereas the
third example concerns the equations of a model of travelling threadline
with a particular constitutive law for the tension.

Example 6.8.1. One–dimensional Euler equations of barotropic fluids.
Let us consider the one–dimensional Euler equations of a barotropic fluid

∂u

∂t
+A(u)

∂u

∂x
= 0, (6.167)

with

u =

[
ρ
v

]
, A =

[
v ρ

p′(ρ)
ρ v

]
, (6.168)

where ρ(t, x) is the mass density, v(t, x) the velocity, and p(ρ) the pressure. This
system is strictly hyperbolic provided that p′(ρ) > 0 (the prime denoting the dif-
ferentiation with respect to the argument), with characteristic velocities

λ1,2 = v ±
√
p′(ρ), (6.169)

to which correspond the left and right eigenvectors

l1,2 =
(√

p′(ρ),±ρ
)
, r1,2 =

(
ρ

±
√
p′(ρ)

)
. (6.170)

The conditions for the possible decoupling provide the constraint

ρp′′(ρ)− 2p′(ρ) = 0, (6.171)

which is satisfied by the special constitutive law

p(ρ) = p0ρ
3, p0 constant. (6.172)

Thus, if the adiabatic index is equal to 3 (in this case the characteristics are straight
lines, [17, p. 88]), we may introduce the variable transformation

U = H(u) (6.173)

such that
(∇uH1) · r2 = 0, (∇uH2) · r1 = 0. (6.174)

As a consequence, by choosing

U1 = H1(ρ, v) = v +
√

3p0ρ, U2 = H2(ρ, v) = v −
√

3p0ρ, (6.175)
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we obtain the following fully decoupled system

∂U1

∂t
+ U1

∂U1

∂x
= 0,

∂U2

∂t
+ U2

∂U2

∂x
= 0.

(6.176)

Example 6.8.2. One–dimensional isentropic gas dynamics equations.
Let us consider the one–dimensional Euler equations for the isentropic flow of

an ideal fluid subject to no external forces,

∂u

∂t
+A(u)

∂u

∂x
= 0, (6.177)

with

u =

 ρ
v
s

 , A =

 v ρ 0
1
ρ
∂p
∂ρ v 1

ρ
∂p
∂s

0 0 v

 , (6.178)

where ρ(t, x) is the mass density, v(t, x) the velocity, s(t, x) the entropy, and
p(ρ, s) the pressure.

The eigenvalues of matrix A are

λ1,2 = v ±

√
∂p

∂ρ
, λ3 = v, (6.179)

with associated left and right eigenvectors

l1,2 =

(√
∂p

∂ρ
,±ρ, ρ

s

√
∂p

∂ρ

)
, l3 = (0, 0, 1),

r1,2 =

 ρ

±
√

∂p
∂ρ

0

 , r3 =

 ρ
0
−s

 .

(6.180)

The constraints
(∇uλ1) · r2 = 0, (∇uλ1) · r3 = 0,

(∇uλ2) · r1 = 0, (∇uλ2) · r3 = 0,
(6.181)

are satisfied with the constitutive law

p(ρ, s) = p0ρ
3s2 + f(s), (6.182)

where p0 is constant and f(s) a function of its argument; therefore, we may intro-
duce the variable transformation

U = H(u) (6.183)

such that
(∇uH1) · r2 = 0, (∇uH1) · r3 = 0,

(∇uH2) · r1 = 0, (∇uH2) · r3 = 0.
(6.184)
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As a consequence, by choosing

U1 = H1(ρ, v, s) = v +
√

3p0ρs,

U2 = H2(ρ, v, s) = v −
√

3p0ρs,

U3 = H3(ρ, v, s) = s,

(6.185)

we obtain the following partially decoupled system

∂U1

∂t
+ U1

∂U1

∂x
= 0,

∂U2

∂t
+ U2

∂U2

∂x
= 0,

∂U3

∂t
+

1

2
(U1 + U2)

∂U3

∂x
= 0,

(6.186)

where the first two equations can be solved independently from each other and the
third one.

Example 6.8.3. Model of travelling threadline.
Let us consider the nonlinear model describing the motion of a moving thread-

line [1, 24] taking into account both geometric and material nonlinearities.
Based upon the following hypotheses:

• the motion is two–dimensional;

• the string is elastic and always in tension;

• the string is perfectly flexible;

• the effects of gravity and air drag are neglected;

in [1] the following equations have been derived:

m(1 + u2
x)1/2dV

x

dt
=

∂

∂x
(T sin θ) ,

m(1 + u2
x)1/2dV

y

dt
=

∂

∂x
(T cos θ) ,

(6.187)

supplemented by the continuity equation

d

dt

(
m(1 + u2

x)1/2
)

+m(1 + u2
x)1/2∂V

x

∂x
= 0, (6.188)

and a constitutive law in the form

T = T (m,mt). (6.189)

In the previous equations,m is the mass per unit length, V x the axial component of
the velocity, V y the transverse component of the velocity, T the tension, and u the
transverse displacement; moreover, the subscripts t and x denote partial derivatives
with respect to the indicated variables.

Upon introduction of the quantity

ρ = m(1 + u2
x)1/2, (6.190)
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and taking into account (see [1] for details) that

sin θ =
ux

(1 + u2
x)1/2

, cos θ =
1

(1 + u2
x)1/2

,

V y = ut + V xux = v + V xε,

(6.191)

assuming the constitutive equation for the tension in the form T = T (m) [24], the
governing equations can be written as

∂u

∂t
+A(u)

∂u

∂x
= 0, (6.192)

where

u =


ρ
V x

v
ε

 , A =


V x ρ 0 0
−T ′

ρ(1+ε2)
V x 0 ε

1+ε2)2

(
T ′ + T

m

)
0 0 2V x (V x)2 − T

m(1+ε2)

0 0 −1 0

 . (6.193)

The eigenvalues of matrix A are

λ1,2 = V x ±
(
−T ′

1 + ε2)

)1/2

, λ3,4 = V x ±
(

T

m(1 + ε2)

)1/2

, (6.194)

with associated left and right eigenvectors

l1,2 =

± √
−(1 + ε2)T ′

ρε
(
V x ∓

√
−T ′
1+ε2

) , 1 + ε2

ε
(
V x ∓

√
−T ′
1+ε2

) , 1

V x ∓
√
−T ′
1+ε2

, 1

 ,

l3,4 =

(
0, 0, ρ, ρV x ±

√
ρT

(1 + ε2)1/2

)
,

r1,2 =


ρ

±
(
−T ′
1+ε2

)1/2

0
0

 , r3,4 =


ρε

1+ε2

±
(

T
m(1+ε2)

)1/2
ε

1+ε2

−
(
V x ± T

m(1+ε2)

)1/2

1

 .

(6.195)

The structure conditions for the partial decoupling

(∇uλi) · rj = 0,

li · ((∇ur`)rj − (∇urj)r`) = 0, i, ` = 1, 2, i 6= `, j = 3, 4,
(6.196)

are satisfied with the following constitutive law

T (m) =
k

m
, k constant. (6.197)

Then, we may introduce the variable transformation

U = H(u) (6.198)
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such that
(∇uHi) · rj = 0, i,= 1, 2, j = 3, 4. (6.199)

By integrating relations (6.199), i.e,(
V x +

√
k

ρ

)
∂H1

∂v
− ∂H1

∂ε
= 0,

(
V x +

√
k

ρ

)
∂H2

∂v
− ∂H2

∂ε
= 0,(

V x −
√
k

ρ

)
∂H1

∂v
− ∂H1

∂ε
= 0,

(
V x −

√
k

ρ

)
∂H2

∂v
− ∂H2

∂ε
= 0,

(6.200)

it follows that
H1 = H1 (ρ, V x) , H2 = H2 (ρ, V x) . (6.201)

As a consequence, by choosing the identity transformation, we obtain this partially
decoupled system

∂ρ

∂t
+ V x ∂ρ

∂x
+ ρ

∂V x

∂x
= 0,

∂V x

∂t
+

k

ρ3

∂ρ

∂x
+ V x∂V

x

∂x
= 0,

∂v

∂t
+ 2V x ∂v

∂x
+

(
(V x)2 − k

ρ2

)
∂ε

∂x
= 0,

∂ε

∂t
− ∂v

∂x
= 0.

(6.202)

It is worth of being observed that with the constitutive relation (6.197) the system
(6.192) has two distinct eigenvalues each with multiplicity 2, and is completely
exceptional [11, 52].

6.9 Conclusions

In the beginning of this Chapter, we faced the decoupling problem of
hyperbolic quasilinear first order systems in two independent variables and
two or three dependent variables. The considered systems can be in prin-
ciple nonautonomous and/or nonhomogeneous and we provided the con-
ditions leading to the partial or full decoupling of the systems. As phys-
ical applications, the partial decoupling of Galilean first order systems in
two and three dependent variables has been considered. In the family of
2 × 2 Galilean first order systems the one–dimensional Euler equations of
barotropic fluids, which, under suitable conditions, can be mapped to the
partially decoupled form, have been characterized. Then, a generalization
of the results found by a direct approach in the case of the decoupling prob-
lem for quasilinear first order systems involving two or three dependent
variables is presented. After introducing the definitions of partially and
fully decoupled systems, a theorem establishing the necessary and suffi-
cient conditions for the decoupling of hyperbolic first order homogeneous
and autonomous quasilinear systems has been given; remarkably, the proof
involves only the properties of eigenvalues and eigenvectors of the coef-
ficient matrix, and is constructive in the sense that it gives the differen-
tial constraints whose integration leads to the decoupling transformation.
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The results were extended, at first, to general first order homogeneous and
autonomous quasilinear systems and, then, to general nonhomogeneous
and/or nonautonomous ones. Some examples of systems of physical in-
terest that can be, under suitable conditions, partially or fully decoupled
are presented. In particular, the theorem is applied to the one–dimensional
isentropic gas dynamics equations that have been decoupled into two non–
interacting blocks, and to a nonlinear model describing the motion of a
moving threadline which, with a special costitutive law rendering it lin-
early degenerate, has been partially decoupled.
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